• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 37
  • 32
  • 18
  • 13
  • 10
  • 9
  • 9
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Improving the Three Dimensional, Structural Velocity Field Reconstruction Process with Computer Vision

Coe, David Hazen 10 September 1998 (has links)
This research presents improvements to the velocity field reconstruction process achieved through computer vision. The first improvement of the velocity reconstruction process is the automation of the scanning laser Doppler vibrometer (SLDV) pose procedure. This automated process results in superior estimates of the position and orientation of the SLDV. The second improvement is the refinement of the formulation for reconstruction of the velocity field. The refined formulation permits faster computation, evaluation, and interpretation of the reconstructed structural velocity field. Taken together, these new procedures significantly improve the overall velocity reconstruction process which results in better, unbiased out-of-plane velocity estimates in the presence of noise. The automation of the SLDV pose procedure is achieved through a computer vision model of the SLDV. The SLDV is modeled as a projective camera, i.e. an imager which preserves projectivities. This projective camera model permits the precise association of object features with image features. Specifically, circular features in the object space are seen by the SLDV as ellipses in the image space. In order to extract object points, the bitangents among the circular features are constructed and the bitangent points selected. The accuracy and precision of the object points are improved through the use of a calibrated object whose circular features are measured with a coordinate measuring machine. The corresponding image points are determined by constructing the bitangents among the ellipses and selecting the tangent points. Taken together, these object/image bitangent point sets are a significantly improved data set for previously developed SLDV pose algorithms. Experimental verification of this automated pose procedure includes demonstrated repeatability, independent validation of the estimated pose parameters, and comparison of the estimated poses with previous methods. The refinement of the velocity reconstruction formulation is a direct result of the computer vision viewpoint adapted for this research. By viewing the velocity data as images of the harmonically excited structure's velocity field, analytical techniques developed for holographic interferometry are extended and applied to SLDV velocity images. Specifically, the "absolute" and "relative" fringe-order methods are used to reconstruct the velocity field with the "best" set of bases. Full and partial least squares solutions with experimental velocity data are calculated. Statistical confidence bounds of the regressed velocity coefficients are analyzed and interpreted to reveal accurate out-of-plane, but poor in-plane velocity estimates. Additionally, the reconstruction process is extended to recover the velocity field of a family of surfaces in the neighborhood of the "real" surface. This refinement relaxes the need for the exact experimental geometry. Finally, the velocity reconstruction procedure is reformulated so that independent least squares solutions are obtained for the two in-plane directions and the out-of plane direction. This formulation divides the original least squares problem into three smaller problems which can be analyzed and interpreted separately. These refinements to the velocity reconstruction process significantly improve the out-of-plane velocity solution and interpretation of the regressed velocity parameters. / Ph. D.
22

Identification of Parameters for the Middle Ear Model

Bornitz, Matthias, Zahnert, Thomas, Hardtke, Hans-Jürgen, Hüttenbrink, Karl-Bernd January 1999 (has links)
This paper presents a method of parameter identification for a finite-element model of the human middle ear. The parameter values are estimated using a characterization of the difference in natural frequencies and mode shapes of the tympanic membrane between the model and the specimens. Experimental results were obtained from temporal bone specimens under sound excitation (300–3,000 Hz). The first 3 modes of the tympanic membrane could be observed with a laser scanning vibrometer and were used to estimate the stiffness parameters for the orthotropic finite-element model of the eardrum. A further point of discussion is the parameter sensitivity and its implication for the identification process. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
23

Uncertainty due to speckle noise in laser vibrometry

Martin, Peter January 2010 (has links)
This thesis presents fundamental research in the field of laser vibrometry for the application to vibration measurements. A key concern for laser vibrometry is the effect of laser speckle which appears when a coherent laser beam scatters from an optically rough surface. The laser vibrometer is sensitive to changes in laser speckle which result from surface motions not in the direction of the incident beam. This adds speckle noise to the vibrometer output which can be indistinguishable from the genuine surface vibrations. This has been termed ‘pseudo-vibration' and requires careful data interpretation by the vibration engineer. This research has discovered that measurements from smooth surfaces, even when no identifiable speckle pattern is generated, can produce noise and therefore reference to speckle noise, in such circumstances, is inappropriate. This thesis has, therefore, adopted the more general term of pseudo-vibration to include noise generated from any surface roughness or treatment, i.e. including but not limited to speckle noise. This thesis develops and implements novel experimental methods to quantify pseudovibration sensitivities (transverse, tilt and rotation sensitivity) with attention focussed on commercially available laser vibrometers and consideration is given to a range of surface roughnesses and treatments. It investigates, experimentally, the fundamental behaviour of speckles and attempts to formulate, for the first time, a relationship between changes in intensity to pseudo-vibration sensitivity levels. The thesis also develops and implements models for computational simulation of pseudo-vibrations using the fundamental behaviour of speckles. The combination of experimentation and simulation improves current understanding of the pseudo-vibration mechanisms and provides the vibration engineer with a valuable resource to improve data interpretation. Two experimental methods of quantifying pseudo-vibration sensitivity are developed and successfully applied in the evaluation of transverse, tilt and rotation sensitivity for two models of commercial laser vibrometer. These evaluations cover both single beam (translational vibration measurement) and parallel beam (for angular vibration measurement) modes. The first method presented requires correction of the vibrometer measurement with an independent measurement of genuine velocity to produce an iii apparent velocity dominated by the required noise components. The second method requires a differential measurement using two vibrometers to cancel common components such as genuine velocity, leaving only uncorrelated noise from each measurement in the resulting apparent velocity. In each case, a third measurement is required of the surface motion component causing pseudo-vibration and this is used to normalise the apparent velocity. Pseudo-vibration sensitivity is then presented as a map showing the spectral shape of the noise, as a mean and standard deviation of harmonic peaks in the map and as a total rms level across a defined bandwidth. The simulations employ a novel and effective approach to modelling speckle evolution. Transverse and tilt sensitivity are predicted for the first time and are verified by the experimental study. They provide the vibration engineer with the potential to estimate pseudo-vibrations using a simple piece of software. The laser beam spot diameter has a large influence on the pseudo-vibration sensitivity. Transverse sensitivity has been quantified as around 0.03% and 0.01% (per order) of the transverse velocity of the surface for beam spot diameters of 100 μm and 600 μm respectively. Larger beam spots have been shown to significantly reduce transverse sensitivity and measurements from smoother surfaces have also shown a reduced level of transverse sensitivity. Tilt sensitivity has been quantified at about 0.1 μms-1/degs-1 and 0.3 μms-1/degs-1 (per order) of angular velocity of the surface for beam spot diameters of 100 μm and 600 μm respectively. Smaller beam spot diameters significantly reduce tilt sensitivity. The surface roughness or treatment has been shown to have little effect on the level of tilt sensitivity. Rotation sensitivity has been quantified at approximately 0.6 μms- 1/rads-1 and 1.9μms-1/rads-1 (per order) of rotation velocity of the rotor for 90 μm and 520 μm. Smaller beam spot diameters have shown a significant reduction in rotation sensitivity and measurements on smoother surfaces have shown a reduced rotation sensitivity. Focussing the laser beam approximately on the rotation axis has also shown a significant reduction in rotation sensitivity. Parallel beam rotation sensitivity has been quantified at 0.016 degs-1/rads-1 and it is demonstrated that this can adequately be estimated using the single beam rotation sensitivity.
24

Vibrational signals as indicators of soil fauna health? : A novel approach to environmental monitoring of ants

Fransson Forsberg, Joel January 2023 (has links)
Soil fauna provides processes of crucial importance for ecosystem functions, but our ability to observe their actions often depend on destructive methods where the integrity of the studied environment (the soil) is compromised. In this study, I develop and test a new generation of environmental monitoring tools that utilize vibrations made by soil macrofauna to inform about their performance and health. Three hypotheses were tested on forest ants (Formica sp.): (i) vibrations on a naturally occurring substrate can be used to measure the activity of ants, (ii) the vibrational signature of ants can inform us about the ants’ health, and (iii) behavior (locomotory activity, foraging etc.) of ants is correlated to specific vibrational signal characteristics. Vibrational signals from ant sub-populations (5 individuals/sample) were recorded on natural substrates (leaves) before and after exposure to sub-lethal levels of a contaminant with known negative effects on ants (imidacloprid). Activity was successfully detected from the inferred vibration oscillograms. However, neither the number of vibrational signals captured, or the signal characteristics changed after imidacloprid exposure, indicating that either the exposure was too low to generate a change in behavior or that the technique was unable to detect subtle changes in behavior. Signals of short duration and amplitude were generated by locomotory activity, but their intensity was dependent on the distance to the vibrometers laser focus point. Longer signal segments were either continuous, random, or rhythmic in their distribution. I suggest that these signals are a result of methodological artifacts, movement of multiple ants, and stridulation/drumming on the substrate, respectively. My findings suggest that this advanced monitoring tool is sensitive enough to capture activity from only a few ants, but the characteristics and number of captured signals are strongly affected by the measured substrate
25

Scanning Laser Registration and Structural Energy Density Based Active Structural Acoustic Control

Manwill, Daniel Alan 17 December 2010 (has links) (PDF)
To simplify the measurement of energy-based structural metrics, a general registration process for the scanning laser doppler vibrometer (SLDV) has been developed. Existing registration techniques, also known as pose estimation or position registration, suffer from mathematical complexity, instrument specificity, and the need for correct optimization initialization. These difficulties have been addressed through development of a general linear laser model and hybrid registration algorithm. These are applicable to any SLDV and allow the registration problem to be solved using straightforward mathematics. Additionally, the hybrid registration algorithm eliminates the need for correct optimization initialization by separating the optimization process from solution selection. The effectiveness of this approach is demonstrated through simulated application and by validation measurements performed on a specially prepared pipe. To increase understanding of the relationships between structural energy metrics and the acoustic response, the use of structural energy density (SED) in active structural acoustic control (ASAC) has also been studied. A genetic algorithm and other simulations were used to determine achievable reduction in acoustic radiation, characterize control system design, and compare SED-based control with the simpler velocity-based control. Using optimized sensor and actuator placements at optimally excited modal frequencies, attenuation of net acoustic intensity was proportional to attenuation of SED. At modal and non-modal frequencies, optimal SED-based ASAC system design is guided by establishing general symmetry between the structural disturbing force and the SED sensor and control actuator. Using fixed sensor and actuator placement, SED-based control has been found to provide superior performance to single point velocity control and very comparable performance to two-point velocity control. Its greatest strength is that it rarely causes unwanted amplifications of large amplitude when properly designed. Genetic algorithm simulations of SED-based ASAC indicated that optimal control effectiveness is obtained when sensors and actuators function in more than one role. For example, an actuator can be placed to simultaneously reduce structural vibration amplitude and reshape the response such that it radiates less efficiently. These principles can be applied to the design of any type of ASAC system.
26

Development and Validation of a Vibration-Based Sound Power Measurement Method

Jones, Cameron Bennion 10 April 2019 (has links)
The International Organization for Standardization (ISO) provides no vibration-based sound power measurement standard that provides Precision (Grade 1) results. Current standards that provide Precision (Grade 1) results require known acoustic environments or complex setups. This thesis details the Vibration Based Radiation Mode (VBRM) method as one approach that could potentially be used to develop a Precision (Grade 1) standard. The VBRM method uses measured surface velocities of a structure and combines them with the radiation resistance matrix to calculate sound power. In this thesis the VBRM method is used to measure the sound power of a single-plate and multiple plate system. The results are compared to sound power measurements using ISO 3741 and good alignment between the 200 Hz and 4 kHz one-third octave band is shown. It also shows that in the case of two plates separated by a distance and driven with uncorrelated sources, the contribution to sound power of each individual plate can be calculated while they are simultaneously excited. The VBRM method is then extended to account for acoustically radiating cylindrical geometries. The mathematical formulations of the radiation resistance matrix and the accompanying acoustic radiation modes of a baffled cylinder are developed. Numberical sound power calculations using the VBRM method and a boundary element method (BEM) are compared and show good alignment. Experimental surface velocity measurements of a cylinder are taken using a scanning laser Doppler vibrometer (SLDV) and the VBRM method is used to calculate the sound power of a cylinder experimentally. The results are compared to sound power measurements taken using ISO 3741.
27

Application of laser doppler vibrocardiography for human heart auscultation

Koegelenberg, Suretha 04 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: This thesis investigates the feasibility of the laser Doppler vibrometer (LDV) for use in the autonomous auscultation of the human heart. As a non-contact measurement device, the LDV could become a very versatile biomedical sensor. LDV, stethoscope, piezoelectric accelerometer (PA) and electrocardiogram (ECG) signals were simultaneously recorded from 20 volunteers at Tygerberg Hospital. Of the 20 volunteers, 17 were confirmed to have cardiovascular disease. 3 patients with normal heart sounds were recorded for control data. The recorded data was successfully denoised using soft threshold wavelet denoising and ensemble empirical mode decomposition. The LDV was compared to the PA in common biomedical applications and found to be equally accurate. The heart sound cycles for each participant were segmented using a combination of ECG data and a simplicity curve. Frequency domain features were extracted from each heart cycle and input into a k-nearest neighbours classifier. It was concluded that the LDV can form part of an autonomous, non-contact auscultation system. / AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die haalbaarheid daarvan om die laser Doppler vibrasiemeter (LDV) vir die outonome beluistering van die menslike hart te gebruik. As 'n kontaklose meettoestel kan die LDV werklik 'n veelsydige biomediese sensor word. Twintig vrywilligers by die Tygerberg Hospitaal se LDV-, stetoskoop-, piësoelektriese versnellingsmeter (PV)- en elektrokardiogram (EKG) seine is gelyktydig opgeneem. Uit die 20 vrywilligers was daar 17 bevestigde gevalle van kardiovaskulêre siektes. Die data van drie pasiënte met normale hartklanke is as kontroledata opgeneem. Geraas is suksesvol uit die opgeneemde data verwyder deur 'n kombinasie van sagtedrempelgolf en saamgestelde empiriese modus ontladingstegnieke. Die LDV was vergelyk met die PV vir algemene biomediese gebruike en daar was gevind dat dit vergelykbare akkuraatheid het. Die hartklanksiklusse van elke deelnemer is gesegmenteer deur EKG data en 'n eenvoudskromme te kombineer. Frekwensiegebiedskenmerke is uit elke hartsiklus onttrek en in 'n k-naastebuurpunt klassifiseerder ingevoer. Daar is tot die gevolgtrekking gekom dat die LDV deel van 'n outonome, kontaklose beluisteringstelsel kan uitmaak.
28

Continuous scanning laser doppler vibrometry for synchronized array measurements: applications to non-contact sensing of human body vibrations

Salman, Muhammad 21 August 2012 (has links)
Laser Doppler Vibrometry (LDV) is a non-contact technique for sensing surface vibrations. Traditionally, LDV uses one or more fixed beams to measure the vibrational velocity of specific points and orientations. In order to measure an angular velocity at least two laser beams are required. Instead, this research proposes to develop a Continuous Scanning Laser Doppler Vibrometer (CSLDV) technique, based on a single laser beam continuously sweeping the area of interest using a scanning mirror. Linear scans allow the measurement of normal and angular velocity while circular scans allow the measurement of normal velocity and two angular velocities. The first part of the study analyzes the performance of rigid body models of both the short line and circular scans (< 1 cm) for measuring low broadband frequency vibrations of gel samples. This thesis focused on low frequency broadband vibration since natural human body vibrations (such as tremor or breathing) are typically below a few hundred hertz. Results for normal and angular velocity measurements are validated against conventional method of using two fixed LDVs. The second part of this research investigates the CSLDV technique for longer scans (< 5 cm). These long scans will be used to act as an array of virtual transducers at multiple points along the scanning path of the single laser beam; thus yielding similar information obtained using an array of several real fixed LDVs. A practical challenge encountered when using CSLDV is speckle noise, that is generated when a coherent light source is reflected back from an optically rough surface. The effect of speckle noise will be quantified by varying different parameters such as scan lengths, scanning frequency, target to sensor distance and the amplitude of excitation. These parameters will be optimized in order to reduce the error of vibration measurements obtained from the CSLDV. Such systems will be used to monitor multiple degrees of freedom of human skeletal muscle vibrations for elastography purposes. The forced vibration of human muscles will be analyzed using these CSLDV techniques. Overall contributions of this work include: (1) Validation of rigid body models of both short line and circular scans CSLDV for broadband low frequency linear and angular velocity measurements; (2) application to sensing natural human body vibrations (e.g., hand tremors); (3) replacement of an array of vibration sensors by a single long line scan CSLDV. (4) development of a dynamic elastography technique for skeletal muscles using CSLDV.
29

Amplification acoustique par implant auditif électromagnétique : effet du couplage ossiculaire sur la fonction de transfert de l'oreille moyenne / Acoustic transfer using an active middle ear implant : effect on performance of the coupling to the middle ear

Devèze, Arnaud 11 June 2010 (has links)
La surdité est un problème de santé publique. Le vieillissement de la population explique ainsi une grande partie des causes de surdités, par la fréquence de la presbyacousie. Le principal moyen de la réhabilitation auditive est représenté par les prothèses auditives conventionnelles. Les aides auditives ont considérablement progressé ces dernières années, principalement en termes d’amélioration du traitement du signal. Ceci étant dit, outre le problème économique, certains facteurs limitent encore les bénéfices que les patients peuvent ressentir (occlusion du conduit auditif, effet larsen, absence d’amplification en ambiance sonore,…). Les implants d’oreille moyenne sont destinés à amplifier le signal sonore en le transmettant à l’oreille moyenne pour compenser une perte auditive. Ils sont indiqués en cas d’échec ou de contre-indication de l’appareillage conventionnel. Cependant, les implants d’oreille moyenne présentent certaines limites comme l’insuffisance de performance. Des données récentes montrent que les performances des techniques de réparation de la chaîne ossiculaire sont dépendantes du couplage des prothèses ossiculaires à la chaîne des osselets. Par ailleurs, des avancées dans la compréhension de la biomécanique de la chaîne ossiculaire confirment l’importance du placement et du couplage des procédés de restauration chirurgicaux. Nous avons formulé l’hypothèse selon laquelle ces données pouvaient être appliquées aux implants d’oreille moyenne pour en améliorer les performances. Nous avons voulu analyser expérimentalement les effets sur les performances de variables telles que : placement d’un transducteur, le couplage à la chaîne des osselets, la taille de l’effecteur, l’effet de stimulations alternatives. Nous avons utilisé un transducteur électromagnétique de dernière génération (Otologics MET-V Gen 2) et une technique d’analyse de la vibration des structures de l’oreille moyenne par vélocimétrie laser. Les résultats ont montré une nette amélioration des performances en fonction des modifications de placement et de couplage à la chaîne des osselets ou à la fenêtre ronde. / Hearing loss is a public health issue. Ageing is the most frequent cause of deafness. The main option for the rehabilitation of hearing loss is the use of conventional hearing aids. These aids have dramatically improved their performance for the past 20 years, mostly with regards to signal processing. However, in addition to economic reasons, some limitations remain (occlusion, feedback, hearing in noise…) and limit the satisfaction of patients. Active middle ear implants (AMEI) have been developed to overcome some of these problems and are indicated n conventional hearing failed to improve patients’ quality of hearing. However, AMEI suffer from limitations, as insufficient performances for severe hearing losses. Recent experimental and clinical data have highlighted the importance of coupling and placement of ossicular reconstruction passive prosthesis use. Other reported new findings regarding the biomechanism of the ossicular chain, especially for high frequency hearing, which is, unfortunately, where most people have their hearing loss. We hypothesized that these findings could be applied to AMEI use. We have analysed experimentally the effects on AMEI performance of variables such as: placement, coupling, size of tranduscer vibrating tip, alternative stimulation options. We used a electromagnetic tranducer from Otologics LLC to drive the middle ear or round window membrane, and a laser Doppler vibrometer to assess for the induced middle transfer function. Results have shown that we could provide great improvement in performance when varying the coupling method and the placement to the ossicular chain or the round window membrane.
30

Development of New Structural Health Monitoring Techniques

Fekrmandi, Hadi 16 March 2015 (has links)
During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.

Page generated in 0.0706 seconds