• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 32
  • 30
  • 20
  • 20
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 346
  • 166
  • 150
  • 135
  • 85
  • 80
  • 55
  • 45
  • 39
  • 37
  • 33
  • 28
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Synthesis and Characterization of Carbon Based One-Dimensional Structures : Tuning Physical and Chemical Properties

Barzegar, HamidReza January 2015 (has links)
Carbon nanostructures have been extensively used in different applications; ranging from electronic and optoelectronic devices to energy conversion. The interest stems from the fact that covalently bonded carbon atoms can form a wide variety of structures with zero-, one- and two-dimensional configuration with different physical properties. For instance, while fullerene molecules (zero-dimensional carbon structures) realize semiconductor behavior, two-dimensional graphene shows metallic behavior with exceptional electron mobility. Moreover the possibility to even further tune these fascinating properties by means of doping, chemical modification and combining carbon based sub-classes into new hybrid structures make the carbon nanostructure even more interesting for practical application.  This thesis focuses on synthesizing SWCNT and different C60 one-dimensional structures as well as tuning their properties by means of different chemical and structural modification. The purpose of the study is to have better understanding of the synthesis and modification techniques, which opens for better control over the properties of the product for desired applications. In this thesis carbon nanotubes (CNTs) are grown by chemical vapor deposition (CVD) on iron/cobalt catalyst particles. The effect of catalyst particle size on the diameter of the grown CNTs is systematically studied and in the case of SWCNTs it is shown that the chirality distribution of the grown SWCNTs can be tuned by altering the catalyst particle composition. In further experiments, incorporation of the nitrogen atoms in SWCNTs structures is examined. A correlation between experimental characterization techniques and theoretical calculation enable for precise analysis of different types of nitrogen configuration in SWCNTs structure and in particular their effect on growth termination and electronic properties of SWCNTs are studied. C60 one-dimensional structures are grown through a solution based method known as Liquid-liquid interfacial precipitation (LLIP). By controlling the crystal seed formation at the early stage of the growth the morphology and size of the grown C60 one-dimensional structures where tuned from nanorods to large diameter rods and tubes. We further introduce a facile solution-based method to photo-polymerize the as-grown C60 nanorods, and show that such a method crates a polymeric C60 shell around the nanorods. The polymeric C60 shell exhibits high stability against common hydrophobic C60 solvents, which makes the photo-polymerized nanorods ideal for further solution-based processing. This is practically shown by decoration of both as grown and photo-polymerized nanorods by palladium nanoparticles and comparison between their electrochemical activities. The electrical properties of the C60 nanorods are also examined by utilizing a field effect transistor geometry comprising different C60 nanorods. In the last part of the study a variant of CNT is synthesized in which large diameter, few-walled CNTs spontaneously transform to a collapsed ribbon shape structure, the so called collapsed carbon nanotube (CCNT). By inserting C60 molecules into the duct edges of CCNT a new hybrid structure comprising C60 molecules and CCNT is synthesized and characterized. A further C60 insertion lead to reinflation of CCNTs, which eventually form few-walled CNT completely filled with C60 molecules.
102

Fabrication of Single-Walled Carbon Nanotube Electrodes for Ultracapacitors

Moore, Joshua John Edward 22 October 2011 (has links)
Well dispersed aqueous suspensions containing single-walled carbon nanotubes (SWCNTs) from bulk powders were prepared with surfactant and without surfactant by acid functionalization. SWCNT coated electrodes were then prepared from the SWCNT aqueous suspensions using various methods to create uniform nanoporous networks of SWCNTs on various substrates and stainless steel (SST) current collectors for use as ultracapacitor electrodes. Drop coating, high voltage electro-spraying (HVES), inkjet printing, and electrophoretic deposition (EPD) methods were evaluated. Optical and scanning electron microscope images were used to evaluate the SWCNT dispersion quality of the various electrodes. Ultimately an EPD process was established which reliably produced uniform SWCNT nanoporous networks on SST substrates. The prepared SWCNT coated electrodes were characterized using cyclic voltammetry and their capacitance was determined. A correlation between extended EPD processing times, EPD processing temperatures, and electrode capacitance was quantified. Optimum EPD processing occurs where linear capacitance gains were observed for processing times less than 10 minutes. At processing times between 10 – 60 minutes a non-linear relationship demonstrated diminishing capacitance gains with extended EPD processing times. Likewise, optimum EPD processing occurs when the processing temperature of the SWCNT suspension is raised above room temperature. At processing temperatures from 45°C to 60°C an increase in capacitance was observed over the room temperature (22°C) electrodes processed for the same durations. Conversely, for processing temperatures less than room temperature, at 5°C, a decrease in capacitance was observed. It was also observed that SWCNT electrodes processed at 60°C processing temperatures resulted in 4 times the capacitance of 5°C electrodes for the same processing times, when the durations were 8 minutes or less. For samples with raised processing temperatures the time dependent capacitance gains were observed to be significantly diminished beyond 10 minute processing times. The SWCNT network thickness was also correlated to EPD processing temperature and capacitance. A linear relationship was identified between the SWCNT network thickness and the capacitance of the electrode. It was also observed that elevated processing temperatures increase the EPD deposition rate of SWCNTs, produce thicker SWCNT networks, and thus create electrodes with higher capacitance than electrodes processed at lower EPD processing temperatures. EPD of SWCNTs was demonstrated in this work to be an effective method for the fabrication of SWCNT ultracapacitor electrodes. Characterization of the process determined that optimal EPD processing occurs within the first 10 minutes of processing time and that elevated processing temperatures yield higher SWCNT deposition rates and higher capacitance values. In this work the addition of SWCNT nanoporous networks to SST electrodes resulted in increases in capacitance of up to 398 times the capacitance of the uncoated SST electrodes yielding a single 1cm2 electrode with a capacitance of 91mF and representing an estimated specific capacitance for the processed SWCNT material of 45.78F/g.
103

Determination of wall thickness and height limits when cutting various materials with wire electric discharge machining processes /

Kim, Sangseop, January 2005 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. School of Technology, 2005. / Includes bibliographical references (p. 77-79).
104

Effects of Multi-walled Carbon Nanotubes (MWCNTs) and Integrated MWCNTs/SiO2 Additives on Polymeric PVDF Membrane for Membrane Distillation

Zhou, Rufan 30 November 2018 (has links)
Multi-walled carbon nanotubes (MWCNTs) and integrated MWCNTs/ SiO2 nanoparticles (NPs) were loaded as additives into nanocomposite polyvinylidene fluoride (PVDF) membranes fabricated via phase inversion methods, and the effects of these additives on the structure and vacuum membrane distillation (VMD) performance of the membranes have been studied. With an appropriate amount of MWCNTs (2 wt.% to PVDF) blended into the membrane, VMD performance of membrane was improved significantly due to higher membrane porosity, contact angle and surface roughness without extreme compromise of liquid entry pressure of water (LEPw), which could reach up to 72 psi. Further integration of MWCNTs with a small amount of SiO2 nanoparticles (NPs) showed a synergic effect resulting in further improvement of VMD flux due primarily to the increase in surface pore size. When the amount of SiO2 NPs additive was large, the effects of NPs dominates the VMD performance. However, the asymmetric structure of PVDF membrane disappears, which exercises an unfavourable effect on VMD performance. All fabricated membranes exhibited a great desalination potential with extremely high salt rejection (>99.98%). The incorporation of MWCNTs did not improve the tensile properties of the membrane.
105

Výroba speciálních drážek v trubkách / On the production of special grooves in pipes

Smítal, Tomáš January 2013 (has links)
This work was created in cooperation with company Mubea. Introduction part describes purpose of automotive headrest and function of special grooves, which are fitted on headrest frame. Overview of manufacturing technologies of these grooves with short summary of their advantages and disadvantages follows. The main part of this work consists of development of new alternative technology for manufacture special grooves in thin-walled tubes with following experimental verification of technological conditions and shape of grooves. This work also contains evaluation of tool life and wear. Interpretation of the results is performed by calculations and graphically.
106

THE PROPERTIES OF NATURAL ORGANIC MATTER (NOM) AFFECT THE IMPACT OF NON-FUNCTIONALIZED AND FUNCTIONALIZED MULTI-WALLED CARBON NANOTUBES (MWCNTS) ON TOMATO PLANTS (SOLANUM LYCOPERSICUM)

Jasim, Nuralhuda Aladdin 01 December 2013 (has links)
Due to the high specific surface area and aspect ratio (length to diameter ratio, or L/D) of carbon nanotubes, they tend to bind strongly through the van der Waals interactions prevailing among tubes. Thus, they agglomerate and settle in water to form large conglomerates. The adsorption of natural organic matter (NOM) or surfactants onto raw multi-walled carbon nanotubes (MWCNTs) was shown to effectively enhance the dispersibility and stabilization of MWCNTs. The two kinds of dispersants used were humic acid and peptone. Also, two functionalized MWCNTs (-OH and -COOH functional groups) were also dispersed in humic acid (HA) to evaluate the effect of surface property on CNT biological interactions. Based on the dynamic light scattering (DLS) analyses, the use of surfactants increased the steric hindrance as well as the charge repulsion between adjacent CNT particles, thereby enhancing their suspension. HA and peptone sorption onto the surface of MWCNTs can cover their hydrophobic surfaces and help stabilize CNTs. Furthermore, hydroxyl modification of MWCNTs resulted in stable dispersions in water containing HA at 10 and 1000mg/L, while COOH-MWCNT suspensions displayed stable dispersion with lower negative surface charges solely at 100g/L. While, TEM images agreed with the DSL analysis that HA-stabilized MWCNTs were well-dispersed compared to pep-stabilized MWCNTs. Both f-MWCNT types showed a significant reduction in agglomerates as compared to the non-functionalized one. It was noted that the dispersion state as well as the surface properties of both MWCNTs and f-MWCNTs plays an effective role in the potential toxic effects of CNTs. Decreases in the growth rate, chlorophyll index, water uptake, dry weight, and root elongation rate along with a rise in mortality were detected as an indication of phyto-toxicity in both the pep-MWCNT suspensions at 1000mg/L and the peptone control seedlings in contrast to the seedlings treated with pep-MWCNTs at 10 and 100mg/L doses . This was an indicator for the presence of suspended MWCNTs as well as their unstable dispersion in the water column. However, the interaction between the HA-CNTs and the plants improved development in terms of water uptake, growth rate, chlorophyll index, dry weight and root elongation rate due to their well- dispersed stability in water. There were no differences among the f-MWCNT, MWCNT and HA plant groups in terms of their quantum yield and chlorophyll content. While the f-MWCNTs significantly enhanced the plants' growth, water transpiration, and dry root and shoot weight as compared to the non-functionalized MWCNTs. It appeared that exposure to OH-MWCNTs improved the development of tomatoes in terms of water uptake, root elongation rate, and growth rate as well as light- and dark-adaptation, whereas COOH-MWCNTs and non-functionalized MWCNTs were apparently toxic in terms of root leakage and dark-adaptation. Overall, our results suggest that the surface properties of CNTs associated with their dispersion stability specify their influence on the growth of tomato plants. Moreover, the nature of the dispersant agent itself plays an active role in the toxicity of MWCNTs on tomatoes. Our investigation indicated that there is a significant correlation between the toxicity of unfunctionalized MWCNTs and f-MWCNTs and the toxicity of the dispersant agent.
107

Quimica de nanoestruturas : funciolnalização de nanoparticulas metalicas e nanotubos de carbono / Chemistry of nanostructures : functionalization of metallic nanoparticles and carbon nanotubes

Otubo, Larissa 13 August 2018 (has links)
Orientador: Oswaldo Luiz Alves / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-13T13:25:05Z (GMT). No. of bitstreams: 1 Otubo_Larissa_D.pdf: 20335674 bytes, checksum: e95a782705baee771821f94a195ba7d0 (MD5) Previous issue date: 2009 / Resumo: Neste trabalho foram feitas preparações de nanopartículas de ouro passivadas com diferentes moléculas orgânicas (4,4'-tiobisbenzenotiol, benzenotiol, aminotiofenol e tiocolesterol). Tais moléculas possuem cadeias aromáticas mono ou difuncionalizadas, tendo tióis e aminas como grupamentos terminais. Foram estudados parâmetros como tamanho, estabilidade frente à agregação e coalescência, formação de blocos de agregados de nanopartículas conectadas por moléculas bifuncionais, variações das absorções no UV-Vis frente à sua formação e agregação, mostrando a importância das moléculas passivadoras nas propriedades das nanopartículas. Foram estudados também os efeitos causados pelo tratamento hidrotérmico sobre os agregados de nanopartículas passivadas com mono e ditióis. Tal estudo reforçou a importância das moléculas passivadoras na estabilidade das nanopartículas, sendo que o ditiol utilizado foi capaz de impedir o crescimento e coalescência das nanopartículas. Na segunda parte desta Tese, foram feitas as purificação e modificação química de nanotubos de carbono de parede simples com grupamentos oxigenados, tióis e aminas, visando a sua interação com nanopartículas de ouro. Foram abordados dois métodos de interação dos nanotubos com as nanopartículas de ouro: o in situ e o ex situ. Tais métodos estão relacionados com a redução do ouro e formação das nanopartículas em presença ou não dos nanotubos modificados, respectivamente. Foi observado que o tipo de grupamento na superfície dos nanotubos e o método de interação influenciaram tanto na quantidade de nanopartículas aderidas aos nanotubos, dado as diferenças de afinidade, quanto na distribuição de tamanho / Abstract: In this Thesis, passivated gold nanoparticles were prepared with different types of organic molecules (4,4'-thiobisbenzenethiol, benzenethiol, aminethiophenol e thiocolesterol). These molecules have aromatic chains, mono or difunctionalized, with thiols and amines as terminal groups. Some aspects were studied: size, stability against aggregation and coalescence, formation of blocks of nanoparticles, connected through bifuntional molecules, variations of UV-Vis absorption during aggregation, wich showed the importance of the passivating molecules on the final properties of the nanoparticles. Hydrothermal treatments were also carried out on the nanoparticles aggregates.Such study reinforced the importance of the passivating molecules on the nanoparticles' stabilization, once the dithiol showed to be capable of preventing the growing and coalescence of the nanoparticles. In the second part of this work, single-walled carbon nanotubes were purified and chemically modified. The chemical modification on the surface of the carbon nanotubes were done resulting in oxygenated, thiol and amine groups, aiming their interaction with gold nanoparticles. Two methods of interaction of the carbon nanotubes with gold nanoparticles were used: in situ and ex situ. Such methods are related with the reduction of gold and formation of the nanoparticles in presence or not of the modified nanotubes, respectively. It was observed that the type of surface modification of the nanotubes and the method of interaction influenced not only in the amount of nanoparticles on the surface of the nanotubes, due to different affinity, but also the size distribution / Doutorado / Quimica Inorganica / Doutor em Ciências
108

Balancing walled garden and open platform approaches for the Internet of Things : A case study of Husqvarna Group

Adomnita, Alexandr January 2016 (has links)
The term “Internet of Things” (IoT) was first introduced by a technology pioneer Kevin Ashton in 1999.Although the term is relatively new, the idea of making networks and computers communicate in order totrack and manage devices has been around for many years. As of now IoT is a rising topic in technicalcommunity. Some specialists are anticipating that by 2025 there will be around 100 billion connected IoTdevices with a worldwide economic impact of more than $11 trillion. On the other hand, Internet of Thingsemerges significant challenges. Currently the organization around world use two main approaches whenentering the IoT market. First one is an open platform and is represented by interoperability andcollaboration with devices from different vendors. Second one is a closed platform, or a “walled garden”approach. A “walled garden” approach is characterized by building “fences” around the user. In other words,the service provider has control over applications, content and media and also restricts the non-approvedcontent to reach the customer. Therefore, the research set out to explore these approaches and show thebenefits and limits they can have on an organization. The research was conducted in collaboration with aSwedish manufacturer of outdoor power products called Husqvarna Group. In order to fully acknowledgethe organization’s approach, 4 interviews were conducted with managers, back end developers andconsultants hired by Husqvarna Group. From the findings, some things should be taken in consideration.First, IoT involves big data being collected, therefore security and privacy are crucial when developingdevices and systems. Second, it is essential for an organization to have the same views when taking a newdirection. Third, when discussing Internet of Things, it means that things connect, devices to sensors,sensor to gateways and gateways to system. And there shouldn’t be a delimitation from a vendor to another.Therefore, open platform approach is seen as the way to diversity and innovation.
109

Steady State Response of Thin-walled Members Under Harmonic Forces

Mohammed Ali, Hjaji January 2013 (has links)
The steady state response of thin-walled members subjected to harmonic forces is investigated in the present study. The governing differential equations of motion and associated boundary conditions are derived from the Hamilton variational principle. The harmonic form of the applied forces is exploited to eliminate the need to discretize the problem in the time domain, resulting in computational efficiency. The formulation is based on a generalization of the Timoshenko-Vlasov beam theory and accounts for warping effects, shear deformation effects due to bending and non-uniform warping, translational and rotary inertial effects and captures flexural-torsional coupling arising in asymmetric cross-sections. Six of the resulting seven field equations are observed to be fully coupled for asymmetric cross-sections while the equation of longitudinal motion is observed to be uncoupled. Separate closed form solutions are provided for the cases of (i) doubly symmetric cross sections, (ii) monosymmetric cross-sections, and (iii) asymmetric cross-sections. The closed-form solutions are provided for cantilever and simply-supported boundary conditions. A family of shape functions is then developed based on the exact solution of the homogeneous field equations and then used to formulate a series of super-convergent finite beam elements. The resulting two-noded beam elements are shown to successfully capture the static and dynamic responses of thin-walled members. The finite elements developed involve no special discretization errors normally encountered in other finite element formulations and provide results in excellent agreement with those based on other established finite elements with a minimal number of degrees of freedom. The formulation is also capable to predict the natural frequencies and mode-shapes of the structural members. Comparisons with non-shear deformable beam solutions demonstrate the importance of shear deformation effects within short-span members subjected to harmonic loads with higher exciting frequencies. Comparisons with shell element solution results demonstrate that distortional effects are more pronounced in cantilevers with short spans. A generalized stress extraction scheme from the finite element formulation is then developed. Also, a generalization of the analysis procedure to accommodate multiple loads with distinct exciting frequencies is established. The study is concluded with design examples which illustrate the applicability of the formulation, in conjunction with established principles of fatigue design, in determining the fatigue life of steel members subjected to multiple harmonic forces.
110

Nanotubes de carbone biparois : fonctionnalisation et détection in vitro / Double-walled carbon nanotubes : functionalization and in vitro detection

Bortolamiol, Tifania 12 March 2015 (has links)
Depuis plusieurs années, les nanotubes de carbones (NTCs) présentent un important potentiel dans le secteur des applications biomédicales (imagerie médicale, vectorisation de médicaments, etc.). Toutes ces applications impliquent des modifications au niveau de la paroi des NTCs par le biais de fonctionnalisations chimiques afin de pouvoir y greffer des molécules d’intérêt. Il existe deux principales voies de fonctionnalisation impliquant différents types d’interactions et des changements plus ou moins conséquents au niveau des NTCs. D’une part, la fonctionnalisation covalente, la plus largement utilisée, conduit à la formation de liaisons covalentes stables mais modifie en même temps la structure et donc les propriétés intrinsèques des NTCs. D’autre part, les NTCs peuvent être fonctionnalisés de manière non-covalente, c’est-à-dire par le biais d’interactions faibles (interactions hydrophobes, π- π stacking, interactions ioniques, etc.), ce qui n’affecte pas la structure des NTCs. Les objectifs de cette thèse ont été, dans un premier temps, de déterminer le meilleur processus de purification des nanotubes de carbone biparois (DWNTs) synthétisés par CCVD au CIRIMAT afin d’en éliminer toutes traces de nanoparticules métalliques mais surtout d'espèces carbonées indésirables (carbone désorganisé), le but étant de partir d’un échantillon oxydé le plus pur possible et dans lequel le carbone n'est présent que sous forme de NTCs. Ainsi, toute éventuelle compétition entre les différentes espèces carbonées, pouvant rendre impossible toute conclusion claire, est évitée. Les DWNTs ont été choisis comme structure idéale pour représenter à la fois les NTCs mono-paroi (morphologie similaire) et les NTCs multi-parois de manière générale. Les protocoles de fonctionnalisations covalente et non-covalente des DWNTs purifiés ont été mis au point dans un deuxième temps. Le choix des molécules d’intérêt à greffer s’est porté principalement sur des fluorophores (isothiocyanate de fluorescéine FITC ; Cy5 ; une streptocyanine uniquement fluorescente par liaison covalente), permettant ainsi une visualisation directe de la fonctionnalisation. La détermination des taux de greffage, réalisée grâce à différentes techniques de caractérisation, a soulevé les questions de la stabilité dans le temps de la fonctionnalisation non-covalente et de la quantité réellement greffée de façon covalente sur les NTCs lorsque cette voie est choisie. Enfin, les DWNTs ainsi fonctionnalisés ont été par la suite incubés en présence de plusieurs types de cellules afin de tester leur détection in vitro et la stabilité de la fonctionnalisation dans ce type d'environnement. La co-localisation des DWNTs fluorescents au niveau des cellules a été rendue possible par le croisement des résultats obtenus par les microscopies confocales de fluorescence et Raman. / For many years now, carbon nanotubes (CNTs) show an important potential for biomedical applications (medical imaging, targeted drug delivery, tissue engineering, cancer treatment). All these applications involve modifications of the CNTs walls, through chemical functionalisation, in order to make possible the attachment of molecules of interest. There are two main approaches for functionalisation, involving different interactions and more or less substantial changes in CNTs. On the one hand, the most widely used is the covalent functionalisation that leads to stable covalent bonds but also modifies the structure and thus the inherent properties of CNTs. On the other hand, CNTs can be functionalised by a non-covalent way, that is, through weak interactions (hydrophobic interactions, π- π stacking, ionic interactions, etc.), which do not affect the structure of CNTs. The goals of this thesis were, in a first phase, to determine the best purification strategy for double-walled carbon nanotubes (DWNTs), synthesized by a Catalytic Chemical Vapour Deposition process developed at the CIRIMAT, in order to remove all traces of metal nanoparticles but especially of unwanted carbonaceous species (disorganised carbon); the aim was to start from the cleanest oxidised sample in which CNTs are the only form of carbon, in order to avoid any competition between different carbon species, making then impossible to get a clear conclusion. DWNTs were selected as an ideal structure which would represent both single-walled CNTs (similar morphology) and multi-walled CNTs in general. The protocols of covalent and non-covalent functionalisations of purified DWNTs were developed in a second stage. The choice of the molecules of interest to graft mainly fell on fluorophores (fluorescein isothiocyanate FITC; Cy5; a streptocyanine only fluorescent when it is covalently attached), thus allowing a direct observation of the functionalisation. Grafting ratios could be determined thanks to the combination of several characterisation techniques, which raised some questions on the stability with time of the non-covalent functionalisation, and on what is really covalently grafted on the CNTs when this way is chosen. Finally, such functionalised DWNTs were incubated with several types of cells to test their in vitro detection and the functionalisation stability in this kind of environment. Co-localisation of fluorescent DWNTs in the cells was achieved by comparison of the results obtained from confocal fluorescence and confocal Raman microscopies.

Page generated in 0.0516 seconds