• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 32
  • 30
  • 20
  • 20
  • 10
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 346
  • 166
  • 150
  • 135
  • 85
  • 80
  • 55
  • 45
  • 39
  • 37
  • 33
  • 28
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Raman and Infrared Imaging of Dynamic Polymer Systems

Bobiak, John Peter January 2006 (has links)
No description available.
202

Solution Manipulation of Single-Walled Carbon Nanotubes and Their Applications in Electrochemistry

Wang, Dan 24 April 2009 (has links)
No description available.
203

Synthesis and Non-Covalent Interactions of Novel Phosphonium-Containing Polymers

Anderson, Emily Baird 28 September 2010 (has links)
Phosphonium ions readily compare to ammonium ions in regards to their aggregate characteristics, thermal stability, and antibacterial activity. Ionic aggregation in phosphonium-based polymers provides thermoreversible crosslinks, ideal for reversible self-assembly, self-healing, and smart response. In polymers, these ionic functionalities aggregate, providing improved moduli, and altering the size and structure of ionic aggregates regulates polymer melt processability. This dissertation highlights phosphonium-based chemistry for the synthesis of novel step-growth ionomers and structure-property relationships in ionic polymers. The synthesis of phosphonium endcapping reagents for melt polyester reactions afforded a thermally stable ionic functionality that controlled molecular weight. Weak association was present with phosphonium ions at low ion concentrations below 7.7 mole %. The use of novel ionic bisacetoacetate monomers in the formation of networks from Michael addition reactions led to the synthesis of ionic networks with increased and broadened glass transitions and improved tensile stresses at break and strains at break compared to those in the non-ionic networks. The first electrospun fibers from Michael addition crosslinking reactions are reported, and equilibrium ionic liquid uptake experimental results indicated that ionic functional networks absorb close to three times the amount of ionic liquid as non-ionic, poly(ethylene glycol)-based films. Chain-extending polyurethanes with a phosphonium diol and subsequently varying the hard segment content led to changes in ionic aggregation, crystallinity, and thermal transitions in the polymers. Additionally, novel phosphonium-based methacrylate monomers incorporated into diblock copolymers with styrene exhibited microphase separation. Overall, the inclusion of phosphonium ions pendant to or in the main chain of various types of polymers led to changes in morphology, improved tensile properties, enhanced moduli, broadened transitions, changes in crystalline melting points, changes in solubility, and appearance of ionic aggregation. / Ph. D.
204

Scalable Electrochemical Surface Enhanced Raman Spectroscopy (EC-SERS) for bio-chemical analysis

Xiao, Chuan 06 October 2021 (has links)
Conducting vertical nanopillar arrays can serve as three-dimensional nanostructured electrodes with improved performance for electrical recording and electrochemical sensing in bio-electronics applications. However, vertical nanopillar-array electrodes made of inorganic conducting materials by conventional nanofabrication approach still faces challenges in high manufacturing costs, poor scalability, and limited choice of carrier substrates. Here, we report a new type of conducting nanopillar arrays composed of multi-walled carbon nanotubes (MWCNTs) doped polymeric nanocomposites, which are manufactured over the wafer-scale on both rigid and flexible substrates by direct nanoimprinting of perfluoropolyether nanowell-array templates into uncured MWCNT/polymer mixtures. By controlling the MWCNT ratios and the annealing temperatures during the fabrication process, MWCNT/polymer nanopillar arrays can possess outstanding electrical properties with high DC conductivity (~4 S/m) and low AC electrochemical impedance (~104 Ω at 1000 Hz). Moreover, by electrochemical impedance spectroscopy (EIS) measurements and equivalent circuit modeling-analysis, we can decompose the overall impedance of MWCNT/polymer nanopillar arrays in the electrolyte into multiple bulk and interfacial circuit components, and thus can illustrate their different dependence on the MWCNT ratios and the annealing temperatures. In particular, we find that a proper annealing process can significantly reduce the anomalous ion diffusion impedance and improve the impedance properties of MWCNT/polymer nanopillars in the electrolyte. / Master of Science / Conducting vertical nanopillar arrays can serve as three-dimensional nanostructured electrodes with improved performance for electrical recording and electrochemical sensing in nano-bioelectronics applications. However, vertical nanopillar-array electrodes made of inorganic conducting materials by conventional nanofabrication approach still faces challenges in high manufacturing costs, poor scalability, and limited choice of carrier substrates. Compared to conventional nanofabrication approaches, nanoimprint lithography exhibits unique advantages for low-cost scalable manufacturing of nanostructures on both rigid and flexible substrates. Very few studies, however, have been conducted to achieve the scalable nanoimprinting fabrication of conducting nanopillar arrays made of MWCNT/polymer nanocomposites. Here, I'm reporting a new type of conducting nanopillar arrays composed of multi-walled carbon nanotubes (MWCNTs) doped polymeric nanocomposites, which can be manufactured over the wafer-scale on both rigid and flexible substrates by direct nanoimprinting of the perfluoropolyether nanowell-array template into uncured MWCNT/polymer mixtures. We find that the nanoimprinted conducting nanopillar arrays can possess appealing electrical properties with a high DC conductivity (~4 S/m) and a low AC electrochemical impedance (~104 Ω at 1000 Hz) in the physiologically relevant electrolyte solutions (1X PBS). Furthermore, I've conducted a systematic equivalent circuit modeling analysis of measured EIS results to understand the effects of the MWCNT ratios and the annealing temperatures on the impedance of different bulk and interfacial circuit components for MWCNT/polymer nanopillar arrays in the electrolyte.
205

Synthesis and Properties of Ion-Containing Block and Segmented Copolymers and Their Composites

Gao, Renlong 13 April 2012 (has links)
Ion-containing segmented polyurethanes exhibit unique morphology and physical properties due to synergistic interactions of electrostatic, hydrogen bonding, and hydrophobic interactions. A fundamental investigation on a series of well-defined ion-containing polyurethanes elucidated the influence of charge placement, charge density, and soft segment structure on physical properties, hydrogen bonding, and morphologies. An unprecedented comparison of poly(ethylene oxide)(PEO)-based sulfonated polyurethanes containing sulfonate anions either in the soft segments or hard segments revealed that sulfonate charge placement dramatically influenced microphase separation and physical properties of segmented polyurethanes, due to altered hydrogen bonding and thermodynamic immiscibility between soft and hard segments. Moreover, studies on sulfonated polyurethanes with identical sulfonated hard segments but different soft segment structures indicated that soft segment structure tailored sulfonated polyurethanes for a wide range of mechanical properties. Sulfonated polyurethanes incorporated with ammonium-functionalized multi-walled carbon nanotubes (MWCNTs) generated novel polyurethane nanocomposites with significantly enhanced mechanical performance. Modification of MWCNTs followed a dendritic strategy, which doubled the functionality by incorporating two ammonium cations per acid site. Complementary characterization demonstrated successful covalent functionalization and formation of surface-bound ammonium salts. Upon comparison with pristine MWCNTs, ammonium-functionalized MWCNTs exhibited significantly enhanced dispersibility in both DMF and sulfonated polyurethane matrices due to good solvation of ammonium cations and intermolecular ionic interactions between anionic polyurethanes and cationic MWCNTs. Segmented polyurethanes containing sulfonated PEO-based soft segments and nonionic hard segments were incorporated with various contents of room temperature ionic liquid, 1-ethyl-3-methylimidazolium ethylsulfate (EMIm ES), to investigate the influence of ionic liquid on physical properties, morphologies, and ionic conductivity. Results indicated that EMIm ES preferentially located in the sulfonated PEO soft phase, leading to significantly enhanced ionic conductivity and well-maintained mechanical properties. These properties are highly desirable for electromechanical transducer applications. Electromechanical actuators fabricated with sulfonated polyurethane/IL composite membranes exhibited effective response under a low applied voltage (4 V). However, in the case of an imidazolium-containing segmented polyurethane with imidazolium ionic hard segments and hydrophobic poly(tetramethylene oxide) (PTMO) soft segments, EMIm ES selectively located into the imidazolium ionic hard domains, as evidenced with a constant PTMO soft segment glass transition temperature (Tg) and systematically reduced imidazolium hard segment Tg. Dielectric relaxation spectroscopy demonstrated that ionic conductivity of imidazolium-containing segmented polyurethanes increased by five orders of magnitude upon incorporation of 30 wt% EMIm ES. Imidazolium-containing sulfonated pentablock copolymers were also investigated to elucidate the influence of imidazolium counter cation structures on solution rheology, morphology, and thermal and mechanical properties. Combination of living anionic polymerization and post functionalization strategies provided well-defined sulfonated pentablock copolymers containing structured imidazolium cations in sulfonated polystyrene middle block. Varying alkyl substitute length on imidazolium cations tailored physical properties and morphologies of sulfonated pentablock copolymers. Results indicated that long alkyl substitutes (octyl and dodecyl) on imidazolium cations significantly influenced solution rheological behavior, morphology, and water uptake properties of sulfonated pentablock copolymers due to the altered characteristic of imidazolium cations. Imidazolium-containing sulfonated pentablock copolymers exhibited systematically tailored mechanical properties due to the plasticizing effect of alkyl substitutes. In addition, incorporation of ionic liquids into sulfonated pentablock copolymers further tailored their mechanical properties and ionic conductivity, which made these materials suitable for electromechanical transducer applications. All sulfonated pentablock copolymers were successfully fabricated into actuator devices, which exhibited effective actuation under a low applied voltage (4 V). / Ph. D.
206

A Framework for Cyclic Simulation of Thin-Walled  Cold-Formed Steel Members in Structural Systems

Padilla-Llano, David Alberto 03 June 2015 (has links)
The objective of this research is to create a computationally efficient seismic analysis framework for cold-formed steel (CFS) framed-buildings supported by hysteretic nonlinear models for CFS members and screw-fastened connections. Design of CFS structures subjected to lateral seismic forces traditionally relies on the strength of subassemblies subjected to lateral loading of systems, such as strapped/sheathed shear walls and diaphragms, to provide adequate protection against collapse. Enabling performance-based seismic design of CFS buildings requires computationally efficient and accurate modeling tools that predict the nonlinear cyclic behavior of CFS buildings, the individual CFS components and connections. Such models should capture the energy dissipation and damage due to buckling and cross-sectional deformations in thin-walled CFS components subjected to cyclic loads such as those induced by earthquakes. Likewise, models for screw-fastened CFS connections should capture the energy dissipation and damage due to tilting, bearing, or screw shear when subjected to cyclic loading. In this dissertation, an analysis framework for CFS structures that captures the nonlinear cyclic behavior of critical components including axial members, flexural members, and screw fastened connections is presented. A modeling approach to simulate thin-walled behavior in CFS members is introduced where parameters were developed using results from an experimental program that investigated the cyclic behavior and energy dissipation in CFS axial members and flexural members. Energy dissipation and cyclic behavior of CFS members were characterized for members experiencing global, distortional and local buckling. Cyclic behavior and energy dissipation in thin steel plates and members was further investigated through finite element analysis in ABAQUS to provide a strategy for modeling steel columns cyclic behavior including local buckling. Model parameters were developed as generalized functions of the hysteretic energy dissipated and slenderness. The capabilities of the analysis framework are demonstrated through simulations of CFS wood sheathed shear wall cyclic responses validated with experimental results from full scale shear wall tests. / Ph. D.
207

Aeroacoustic Study of a Model-Scale Landing Gear in a Semi-Anechoic Wind Tunnel

Remillieux, Marcel Christophe 04 May 2007 (has links)
An aeroacoustic study was conducted on a 26%-scale Boeing 777 main landing gear in the Virginia Tech (VT) Anechoic Stability Wind Tunnel. The VT Anechoic Stability Wind Tunnel allowed noise measurements to be carried out using both a 63-elements microphone phased array and a linear array of 15 microphones. The noise sources were identified from the flyover view under various flow speeds and the phased array positioned in both the near and far-field. The directivity pattern of the landing gear was determined using the linear array of microphones. The effectiveness of 4 passive noise control devices was evaluated. The 26%-scale model tested was a faithful reproduction of the full-scale landing gear and included most of the full-scale details with accuracy down to 3 mm. The same landing gear model was previously tested in the original hard-walled configuration of the VT tunnel with the same phased array mounted on the wall of the test section, i.e. near-field position. Thus, the new anechoic configuration of the VT wind tunnel offered a unique opportunity to directly compare, using the same gear model and phased array instrumentation, data collected in hard-walled and semi-anechoic test sections. The main objectives of the present work were (i) to evaluate the validity of conducting aeroacoustic studies in non-acoustically treated, hard-walled wind tunnels, (ii) to test the effectiveness of various streamlining devices (passive noise control) at different flyover locations, and (iii) to assess if phased array measurements can be used to estimate noise reduction. As expected, the results from this work show that a reduction of the background noise (e.g. anechoic configuration) leads to significantly cleaner beamforming maps and allows one to locate noise sources that would not be identified otherwise. By using the integrated spectra for the baseline landing gear, it was found that in the hard-walled test section the levels of the landing gear noise were overestimated. Phased array measurements in the near and far-field positions were also compared in the anechoic configuration. The results showed that straight under the gear, near-field measurements located only the lower-truck noise sources, i.e. noise components located behind the truck were shielded. It was thus demonstrated that near-field, phased-array measurements of the landing gear noise straight under the gear are not suitable. The array was also placed in the far-field, on the rear-arc of the landing gear. From this position, other noise sources such as the strut could be identified. This result demonstrated that noise from the landing gear on the flyover path cannot be characterized by only taking phased array measurement right under the gear. The noise reduction potential of various streamlining devices was estimated from phased array measurements (by integrating the beamforming maps) and using the linear array of individually calibrated microphones. Comparison of the two approaches showed that the reductions estimated from the phased array and a single microphone were in good agreement in the far-field. However, it was found that in the near-field, straight under the gear, phased array measurements greatly overestimate the attenuation. / Master of Science
208

Finite element analysis and simple design calculation method for rectangular CFSTs under local bearing forces

Yang, Y., Wen, Z., Dai, Xianghe 26 May 2016 (has links)
No / Rectangular concrete-filled steel tube (CFST) may be subjected to local bearing forces transmitted from brace members while being used as a chord of a truss, and thus development of finite element analysis (FEA) and simple design calculation method for rectangular CFSTs under local bearing forces are very important to ensure the safety and reliable design of such a truss with rectangular CFST chords in engineering practices. A three-dimensional FEA model was developed using ABAQUS software package to predict the performance of thin-walled rectangular CFST under local bearing forces. The preciseness of the predicted results was evaluated by comparison with experimental results reported in the available literature. The comparison and analysis show that the predicted failure pattern, load versus deformation curves and bearing capacity of rectangular CFST under local bearing forces obtained from FEA modelling were generally in good agreement with the experimental observations. After the validation, the FEA model was adopted for the mechanism analysis of typical rectangular CFSTs under local bearing forces. Finally, based on the parametric analysis, simple design equations were proposed to be used to calculate the bearing capacity of rectangular CFST under local bearing forces. / National Natural Science Foundation of China (51421064) and the Natural Science Foundation of Liaoning Province (2013020125). The financial support is gratefully acknowledged.
209

Numerical Modeling and Characterization of Vertically Aligned Carbon Nanotube Arrays

Joseph, Johnson 01 January 2013 (has links)
Since their discoveries, carbon nanotubes have been widely studied, but mostly in the forms of 1D individual carbon nanotube (CNT). From practical application point of view, it is highly desirable to produce carbon nanotubes in large scales. This has resulted in a new class of carbon nanotube material, called the vertically aligned carbon nanotube arrays (VA-CNTs). To date, our ability to design and model this complex material is still limited. The classical molecular mechanics methods used to model individual CNTs are not applicable to the modeling of VA-CNT structures due to the significant computational efforts required. This research is to develop efficient structural mechanics approaches to design, model and characterize the mechanical responses of the VA-CNTs. The structural beam and shell mechanics are generally applicable to the well aligned VA-CNTs prepared by template synthesis while the structural solid elements are more applicable to much complex, super-long VA-CNTs from template-free synthesis. VA-CNTs are also highly “tunable” from the structure standpoint. The architectures and geometric parameters of the VA-CNTs have been thoroughly examined, including tube configuration, tube diameter, tube height, nanotube array density, tube distribution pattern, among many other factors. Overall, the structural mechanics approaches are simple and robust methods for design and characterization of these novel carbon nanomaterials
210

The late holocene history of vegetation, climate, fire dynamics and human impacts in Java and Southern Kalimantan

Poliakova, Anastasia 24 September 2015 (has links)
(Bahasa Indonesia) Analisa yang terperinci mengenai lingkungan di masa lalu, iklim dan sejarah penggunaaan lahan di wilayah Indonesia sangat penting untuk memperoleh pemahaman yang lebih baik mengenai hubungan manusia-lingkungan dan untuk mencegah ketidakpastian perkembangan wilayah tersebut di masa depan. Indonesia merupakan salah satu wilayah yang memiliki keanekaragaman terbesar, dan pada saat yang bersamaan juga merupakan salah satu Negara yang mempunyai jumlah penduduk terpadat di dunia. Seiring dengan sejarah, pengaruh dari aktivitas manusia pada suatu daerah menjadi semakin kuat. Penelitian ini dilakukan untuk mengakses peranan manusia terhadap perubahan lingkungan. Penelitian kami difokuskan pada rekonstruksi pola vegetasi di masa lampau, perubahan lingkungan dan interaksi antara manusia dan lingkungan yang tercermin dalam sedimen laut di perairan Indonesia. Dua macam pendekatan yang digunakan dalam studi ini adalah: polen (serbuik sari), yang berasal dari darat dan diharapkan bisa memberikan informasi yang beragam tentang vegetasi dan dinamika penggunaan lahan, dan organic dinoflagelata yang berasal dari lingkungan laut dan merefleksikan perubahan parameter air secara kuantitatif (misal. SST, SSS) dan kualitatif (mis: kondisi tropic dilihat dari segi makro-elemen utama dan oksigen terlarut dalam air). Selain itu, arang mikro dipelajari untuk mendapatkan data mengenai sejarah kebakaran di wilayah tersebut dan untuk memperoleh data tambahan untuk interpretasi polen dan data dinoflagelata. Penelitian dilakukan di dua situs sebagai perbandingan: pertama, di wilayah Jawa yang padat penduduk dengan sejarah panjang dari dampak aktivitas manusia yang menghasilkan lanskap pertanian yang luas, dan yang kedua, di wilayah Kalimantan Selatan dengan kepadatan penduduk yang tidak terlalu tinggi dan tidak banyak perubahan akibat pengaruh aktivitas manusia dan masih merupakan vegetasi alami. Metode yang digunakan, palinologi laut memerlukan perhatian khusus dalam interpretasi data. Faktor pengendapan polen adalah sangat penting, terutama untuk daerah-daerah dengan pengaruh kuat dari angin dan arus laut seperti wilayah Indonesia dimana sistem iklim secara keseluruhan didorong sebagian oleh pergantian musim. Untuk mendapatkan beberapa pemikiran mengenai transportasi sedimen di wilayah ini, kami mempelajari dan membahas secara rinci perbedaan jumlah polen yang dikumpulkan pada kondisi musim hujan yang berbeda serta selama waktu perpindahan musim. Subyek manuskrip pertama kami adalah kemelimpahan dan komposisi taksa modern polen dan spora yang didapat dari sedimen yang terakumulasi di Samudera India sebelah barat daya Jawa. Hasil yang diperoleh digunakan untuk interpretasi lebih lanjut dari fosil polen laut. Sejarah intensifikasi penggunaan lahan dan perubahan vegetasi lebih dari 3500 tahun yang lalu yang diperoleh dari dinoflagelata dan kumpullan polen dari sedimen laut dipresentasikan dalam jurnal yang kedua. Studi ini didasarkan pada perbandingan dua core laut dari lepas Laut Jawa dekat Kalimantan Barat (Sungai Jelai) and bagian timur laut Jawa (Sungai/Bengavan Solo). Pada manuskrip yang ketiga, hasil ini diperbandingkan dengan sedimen core dari lepas pantai yang diambil dari bagian hulu sungai Pembuang. Studi ini membahas mengenai hasil analisa geokimia dan analisa dinoflagelata dalam cakupan paleoekologi dan paleoenvironment. Manuskrip kelima membahas tentang keragaman polen dalam core sedimen laut dari wilayah Indonesia. Studi ini merangkum pengetahuan yang diperoleh selama meneliti core sedimen dari Laut Jawa dan dari studi perangkap sedimen di Samudera Hindia. Dalam bentuk atlas polen, kami memberikan hasil analisis secara rinci dari daftar taksa polen dan dilengkapi dengan foto mikro pada tingkat fokus yang berbeda. Hasil keseluruhan dari penelitian ini akan memberikan kontribusi pada pengetahuan tentang dinamika ekosistem dan sejarah alam di wilayah Indonesia dan dapat membantu investigasi paleoekologi dan paleo-iklim di masa depan secara lebih rinci.

Page generated in 0.0448 seconds