• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 67
  • 67
  • 30
  • 19
  • 17
  • 14
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Flavins and Their Analogues as Natural and Artificial Catalysts

Sichula, Vincent A. 02 March 2011 (has links)
No description available.
62

Hydrothermal and Ambient Temperature Anchoring of Co (II) Oxygen Evolution Catalyst on Zeolitic Surfaces

Del Pilar Albaladejo, Joselyn January 2014 (has links)
No description available.
63

Electrochemical and spectroscopic investigations of carbonate-mediated water oxidation to peroxide

Bemana, Hossein 02 1900 (has links)
Le développement de technologies électrosynthétiques pour la production de H2O2 est attrayant du point de vue de la durabilité. L’utilisation de dioxyde de carbone et/ou d’espèces carbonatées comme médiateurs dans l’oxydation de l’eau en peroxyde est apparue comme une voie viable pour y parvenir, mais de nombreuses questions demeurent quant au mécanisme qui doit être abordé avant que des systèmes pratiques n’émergent. À cette fin, ce travail combine des méthodes électrochimiques et spectroscopiques pour étudier les voies de reaction possibles et les facteurs influençant l'efficacité de cette réaction. Nos résultats électrochimiques indiquent que le CO32- est l'espèce clé qui subit une oxydation électrochimique, avant de réagir avec l'eau loin de la surface du catalyseur vers la production de H2O2. Grâce à des expériences spectroélectrochimiques infrarouges et Raman, nous avons noté que l'épuisement du CO32- est un facteur clé qui limite la sélectivité du procédé. À son tour, l'application de l'électrolyse pulsée peut augmenter cela, avec un ensemble initial de paramètres optimisés augmentant la sélectivité de 20 % à 27 %. Dans l’ensemble, ces travaux contribuent à ouvrir la voie au développement futur d’un système électrosynthétique H2O2 pratique. / The development of electrosynthetic technologies for H2O2 production is appealing from a sustainability perspective. The use of carbon dioxide and/or carbonate species as mediators in water oxidation to peroxide has emerged as a viable route to do so but still many questions remain about the mechanism that must be addressed before practical systems emerge. To this end, this work combines electrochemical and spectroscopic methods to investigate possible reaction pathways and factors influencing the efficiency of this reaction. Our electrochemical results indicate that CO32- is the key species that undergoes electrochemical oxidation, prior to reacting with water away from the catalyst surface en route to H2O2 production. Through spectroelectrochemical infrared and Raman experiments, we noted that CO32- depletion is a key factor that limits the selectivity of the process. In turn, showed how the application of pulsed electrolysis can augment this, with an initial set of optimized parameters increasing the selectivity from 20% to 27%. In all, this work helps pave the way for future development of practical H2O2 electrosynthetic system.
64

Synthesis and characterization of catalysts for photo-oxidation of water

Sheth, Sujitraj 11 December 2013 (has links) (PDF)
Artificial photosynthesis is often considered to have great potential to provide alternative, renewable fuels by harvesting, conversion and storage of solar energy. One promising approach is the development of modular molecular photocatalysts inspired by natural photosynthetic enzymes. The first part of this thesis deals with artificial mimics of the water oxidizing photosystem II composed of a chromophore and an electron relay as synthetic counterpart of the P680-TyrZ/His190 ensemble of photosystem II. Three ruthenium polypyridyl - imidazole - phenol complexes with varying position of a methyl group on the phenol ring (Ru-xMe) were synthesized and characterized by electrochemical and photophysical methods. As an improvement compared to earlier complexes the increased redox potential (~0.9 V vs. Ferrocene) of the phenol groups makes their function as an electron relay in a photocatalytic system for water oxidation thermodynamically possible. Time-resolved absorption studies revealed fast intramolecular electron transfer (<5-10 µs in aprotic solvent and <100 ns in water) despite the low driving force and the importance of the hydrogen bond between the phenol and the imidazole group was put in evidence. Slight differences between the three Ru-xMe complexes and investigation of the effect of external bases allowed to derive a mechanistic picture in which the imidazole is involved in a "proton domino" reaction. Accepting the phenolic proton upon ligand oxidation (within the H-bond) renders its second nitrogen site more acidic and only deprotonation of this site pulls the overall equilibrium completely towards oxidation of the ligand. Another part of this thesis comprises a chromophore-tryptophan construct synthesized using a click chemistry approach. Light-induced oxidation of Trp in this Ru-tryptophan complex was shown to follow ETPT mechanism. Depending on the pH conditions tryptophan radicals, either Trp* or TrpH*⁺ were detected and spectral measurement at different time showed the transition between the two forms. Deprotonation of the radical was dependent on the concentration of water as proton acceptor. Later part of the thesis deals with efforts to covalently bind a catalytic unit to the previously characterized chromophore-electron relay module. The click chemistry approach was not successful to obtain the final photocatalytic assembly. Therefore bimolecular activation of a Mn salen catalyst was performed and formation of Mn(IV) species was observed. As a step towards utilization of these types of photocatalysts in a photoelectrochemical cell a [Ru(bpy)₃]²⁺ chromophore with phosphonate anchoring groups (Ru-Phosphonate) was synthesized and grafted on the surface of a TiO₂ mesoporous semiconductor surface anode to perform photocurrent measurements.
65

Transformations of Energy-Related Small Molecules at Dinuclear Complexes

Lücken, Jana 02 November 2021 (has links)
No description available.
66

Synthesis and characterization of catalysts for photo-oxidation of water / Conception et caractérisation de nouveaux catalyseurs pour la photolyse de l’eau

Sheth, Sujitraj 11 December 2013 (has links)
La photosynthèse artificielle est considérée comme étant un atout capable de fournir des carburants alternatifs et renouvelables par conversion et stockage de l'énergie solaire. Une approche prometteuse consiste en un développement de photo-catalyseurs moléculaires inspirés par des enzymes photosynthétiques naturelles. La première partie de cette thèse concerne les modèles artificiels du photosystème II (qui catalyse l'oxydation d'eau), composé d'un chromophore et d’un relais d’électrons comme équivalent synthétique correspondant à l'ensemble P680-TyrZ/His190 du photosystème II. Trois complexes ruthénium polypyridyl - imidazole - phénol avec un groupe méthylique à différentes positions sur l'anneau phénolique (Ru-xMe) ont été synthétisés et caractérisés par des méthodes électrochimiques et photophysiques. L’augmentation, comparée aux complexes précédents, du potentiel redox des groupes phénols (0.20 V->0.9 V par rapport à l’électrode de ferrocène) rend leur fonction de relais d’électron dans un système photocatalytique pour l'oxydation d'eau thermodynamiquement possible. Des études d’absorption transitoire ont révélé que le transfert d’électron intramoléculaire est rapide (5-10 µs dans solvant aprotique et < 100 ns dans l'eau) malgré la faible force motrice, mettant en evidence l'importance de la liaison hydrogène entre le phénol et le groupe imidazole. Les légères différences entre les trois complexes Ru-xMe ainsi que l’étude de l'effet de bases externes nous ont permis d’établir un mécanisme dans laquelle l'imidazole est impliqué dans une réaction de transfert de proton en cascade. L'acceptation du proton phénolique durant l'oxydation du ligand rend son deuxième site azote plus acide et seulement la déprotonation de ce dernier bascule l’équilibre réactionnel complétement vers l'oxydation du ligand. La deuxième partie de cette thèse consiste en la synthèse d’un complexe chromophore-tryptophane en utilisant une approche de chimie dite « click ». On a montré que l'oxydation, induite par la lumière, du Trp au sein du complexe Ru-tryptophane suit un mécanisme ETPT. Selon le pH, les radicaux du tryptophane (Trp• ou TrpH•⁺) ont été détectés et les mesures spectrales à différents temps ont montrés la transition entre les deux formes radicalaires. La déprotonation du radical dépend de la concentration d'eau assurant la fonction d’accepteur de proton. La dernière partie de la thèse concerne nos efforts à lier, par une liaison covalente, une unité catalytique au module de chromophore- relais électronique caractérisé précédemment. L'approche de chimie « click » n’était pas efficace pour l’obtention de l’assemblage photocatalytique final. Donc, l'activation biomoléculaire d'un catalyseur Mn salen a été effectuée et la formation de l’espèce Mn(IV) a été observée. Etant une étape vers l'utilisation de ces types de photocatalyseurs dans une cellule photoélectrochimique, un chromophore [Ru(bpy)₃]²⁺ avec des groupes d’ancrage phosphonate a été synthétisé (Ru-phosphonate) et greffé sur la surface méso-poreuses d'un semi-conducteur de TiO₂ pour effectuer des mesures du photocourant. / Artificial photosynthesis is often considered to have great potential to provide alternative, renewable fuels by harvesting, conversion and storage of solar energy. One promising approach is the development of modular molecular photocatalysts inspired by natural photosynthetic enzymes. The first part of this thesis deals with artificial mimics of the water oxidizing photosystem II composed of a chromophore and an electron relay as synthetic counterpart of the P680-TyrZ/His190 ensemble of photosystem II. Three ruthenium polypyridyl – imidazole - phenol complexes with varying position of a methyl group on the phenol ring (Ru-xMe) were synthesized and characterized by electrochemical and photophysical methods. As an improvement compared to earlier complexes the increased redox potential (~0.9 V vs. Ferrocene) of the phenol groups makes their function as an electron relay in a photocatalytic system for water oxidation thermodynamically possible. Time-resolved absorption studies revealed fast intramolecular electron transfer (<5-10 µs in aprotic solvent and <100 ns in water) despite the low driving force and the importance of the hydrogen bond between the phenol and the imidazole group was put in evidence. Slight differences between the three Ru-xMe complexes and investigation of the effect of external bases allowed to derive a mechanistic picture in which the imidazole is involved in a “proton domino” reaction. Accepting the phenolic proton upon ligand oxidation (within the H-bond) renders its second nitrogen site more acidic and only deprotonation of this site pulls the overall equilibrium completely towards oxidation of the ligand. Another part of this thesis comprises a chromophore-tryptophan construct synthesized using a click chemistry approach. Light-induced oxidation of Trp in this Ru-tryptophan complex was shown to follow ETPT mechanism. Depending on the pH conditions tryptophan radicals, either Trp• or TrpH•⁺ were detected and spectral measurement at different time showed the transition between the two forms. Deprotonation of the radical was dependent on the concentration of water as proton acceptor. Later part of the thesis deals with efforts to covalently bind a catalytic unit to the previously characterized chromophore-electron relay module. The click chemistry approach was not successful to obtain the final photocatalytic assembly. Therefore bimolecular activation of a Mn salen catalyst was performed and formation of Mn(IV) species was observed. As a step towards utilization of these types of photocatalysts in a photoelectrochemical cell a [Ru(bpy)₃]²⁺ chromophore with phosphonate anchoring groups (Ru-Phosphonate) was synthesized and grafted on the surface of a TiO₂ mesoporous semiconductor surface anode to perform photocurrent measurements.
67

Electrochemical and Photoelectrochemical Investigations of Co, Mn and Ir-Based Catalysts for Water Splitting

Irshad, Ahamed M January 2016 (has links) (PDF)
Synopsis of thesis entitled “Electrochemical and Photoelectrochemical Investigations of Co, Mn and Ir-based Catalysts for Water Splitting” by Ahamed Irshad M (SR No: 02-01-02-10-11-11-1-08823) under the supervision of Prof. N. Munichandraiah, Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore (India), for the Ph.D. degree of the Institute under the Faculty of Science. Hydrogen is considered as the fuel for future owing to its high gravimetric energy density and eco-friendly use. In addition, H2 is an important feedstock in Haber process for ammonia synthesis and petroleum refining. Although, it is the most abundant element in the universe, elemental hydrogen is not available in large quantities on the planet. Consequently, H2 must be produced from its various chemical compounds available on earth. Currently, H2 is produced in large scale from methane by a process called steam-methane reforming (SMR). This process releases huge amount of CO2 into atmosphere as the by-product causing serious environmental issues. The development of alternate clean methods to generate H2 is a key challenge for the realization of hydrogen economy. Production of H2 gas by water splitting using electricity or sunlight is known. Low cost, high natural abundance and carbon neutrality make water as the best source of hydrogen. Thermodynamically, splitting of H2O needs 237 kJ mol-1 of energy, which corresponds to 1.23 V according to the equation, ΔG = -nFE. However, commercial electrolyzers usually operate between 1.8 to 2.1 V, due to the need of large overvoltage. The high overvoltage and subsequent energy losses are mainly associated with the sluggish kinetics of oxygen evolution reaction (OER) at the anode and hydrogen evolution reaction (HER) at the cathode. The overvoltage can be considerably reduced using suitable catalysts. Hence, the design and development of stable, robust and highly active catalysts for OER and HER are essential to make water splitting efficient and economical. Attempts in the direction of preparing several novel OER and HER catalysts, physicochemical characterizations and their electrochemical or photoelectrochemical activity are described in the thesis. A comprehensive review of the literature on various types of catalysts, thermodynamics, kinetics and mechanisms of catalysis are provided in the Chapter 1 of the thesis. Chapter 2 furnishes a brief description on various experimental techniques and procedures adopted at different stages of the present studies. Chapter 3 explains the results of the studies on kinetics of deposition and stability of Nocera’s Co-phosphate (Co-Pi) catalyst using electrochemical quartz crystal microbalance (EQCM). The in-situ mass measurements during CV experiments on Au electrode confirm the deposition of Co-Pi at potential above 0.87 V vs. Ag/AgCl, 3 M KCl (Fig.1a and b). The catalyst is found to deposit via a nucleus mediated process at a rate of 1.8 ng s-1 from 0.5 mM Co2+ in 0.1 M neural phosphate solution at 1.0 V. Further studies on the potential and electrolyte dependent stability of the Co-Pi suggest that the catalyst undergoes severe corrosion at high overpotential and in non-buffer electrolytes. Current/ Fig.1 (a) Cyclic voltammograms and (b) mass variations vs. potential of Au-coated quartz crystal in 0.1 M potassium phosphate buffer solution (pH 7.0) containing 0.5 mM Co(NO3)2 Chapter 4 deals with the electrochemical deposition of a novel OER catalyst, namely, Co-acetate (Co-Ac) from a neutral acetate electrolyte containing Co2+ ions. Use of acetate solution instead of phosphate avoids the solubility limitations and helps to get thick layer of the catalyst in a short time from concentrated Co2+ solutions. In addition, the Co-Ac is found to be catalytically superior to Co-Pi (Fig. 2a). It is also observed that the Co-Ac catalyst undergoes ion exchange with electrolyte species during electrolysis in phosphate buffer solution, which results in the formation of a hybrid Co-Ac-Pi catalyst (Fig. 2b). The presence of both acetate and phosphate ions in the catalyst and their synergistic catalytic effect enhance the OER activity. Fig.2. (a) Linear sweep voltammograms of Co-Ac in (i) phosphate and (ii) acetate electrolytes, and that of Co-Pi in (iii) acetate and (iv) phosphate electrolytes. (b) SEM image showing the formation of two layers of the catalysts after electrolysis in phosphate solution. In Chapter 5, high OER activity of an electrodeposited amorphous Ir-phosphate (Ir-Pi) is investigated. The catalyst is prepared by the anodic polarization of a carbon paper electrode in neutral phosphate solution containing Ir3+ ions (Fig. 3). The Ir-Pi film deposited on the electrode has Ir and P in an approximate ratio of 1:2 with Ir in an oxidation state higher than +4. Phosphate ions play a major role for both the electrochemical deposition process and its catalytic activity towards OER. The Ir-Pi catalyst is superior to similarly deposited IrO2 and Co-Pi catalysts both in terms of onset potential and current density at any potential in the OER region. Tafel measurements and pH dependence studies identify the formation of a high energy intermediate during oxygen evolution. Fig.3. (a) Cyclic voltammograms during the Ir-Pi deposition and (b) SEM image of Ir-Pi on C. Chapter 6 is on the preparation of a composite of Mn-phosphate (MnOx-Pi) and reduced graphene oxide (rGO) and its utilization as an OER catalyst. The composite is prepared by the simultaneous electrochemical reduction of KMnO4 and graphene oxide (GO) in a phosphate solution (pH 7.0). Various analytical techniques such as TEM, XPS, Raman spectroscopy, etc. confirm the formation of a composite (Fig. 4) and electrochemical studies indicate the favourable role of rGO towards OER. Under identical conditions, MnOx-Pi-rGO gives 6.2 mA cm-2 at 2.05 V vs. RHE whereas it is only 2.9 mA cm-2 for MnOx-Pi alone. However, the catalyst is not very stable during OER which is ascribed to slow oxidation of Mn3+ in the catalyst. Fig.4. (a) Raman spectrum and (b) TEM image of MnOx-Pi-rGO. In Chapter 7, an amorphous Ni-Co-S film is prepared by a potentiodynamic deposition method using thiourea as the sulphur source. The electrodeposit is used as a catalyst for the HER in neutral phosphate solution. The composition of the catalyst and the HER activity are tuned by varying the ratio of concentrations of Ni2+ and Co2+. The bimetallic Ni-Co-S catalyst exhibits better HER activity than both Ni-S and Co-S (Fig. 5a). Under optimized deposition conditions, Ni-Co-S requires just 150 mV for the onset of HER and 10 mA cm-2 is obtained for 280 mV overpotential. The Ni-Co-S shows two different Tafel slopes, indicating two different potential dependent HER mechanisms (Fig. 5b). Presence of two different catalytic sites which contribute selectively in different potential regions is proposed. Fig.5. (a) Linear sweep voltammograms of HER at 1 mV s-1 in 1 M phosphate solutions (pH 7.4) using (i) Ni-S, (ii) Co-S and (c) Ni-Co-S. (b) Tafel plot of Ni-Co-S showing two Tafel slopes. Photoelectrochemical OER using ZnO photoanode and Co-acetate (Co-Ac) cocatalyst is studied in Chapter 8 of the thesis. Randomly oriented crystalline ZnO nanorods are prepared by the electrochemical deposition of Zn(OH)2 followed by heat treatment at 350 ºC in air. Co-Ac is then photochemically deposited onto ZnO nanorods by UV illumination in the presence of neutral acetate buffer solution containing Co2+ ions. The hybrid Co-Ac-ZnO shows higher photoactivity in comparison with bare ZnO towards PEC water oxidation (Fig. 6). Co-Ac acts as a cocatalyst and reduces the charge carrier recombination at the electrode/electrolyte interface. Fig.6. (a) Linear sweep voltammograms of ZnO under (i) dark and (ii) light conditions, and that of Co-Ac-ZnO in (iii) dark and (iv) light in 0.1 M phosphate (pH 7.0) electrolyte. Chapter 9 deals with PEC water oxidation using α-Fe2O3 photoanode and Ir-phosphate (Ir-Pi) cocatalyst. α-Fe2O3 is prepared by direct heating of Fe film in air which in turn is deposited by the electrochemical reduction of Fe2+. Thickness of the film as well as calcination temperature is carefully optimized. In order to further enhance the OER kinetics, Ir-Pi is electrochemically deposited onto α-Fe2O3. Under optimized conditions, Ir-Pi deposited α-Fe2O3 shows around 3 times higher photocurrent than that of bare α-Fe2O3 at 1.23 V vs. RHE (Fig. 7). Ir-Pi acts as a cocatalyst for OER and reduces the photogenerated charge carrier recombination. Fig.7. Photocurrent variation of α-Fe2O3 electrode at 1.23 V vs. RHE for (i) front and (ii) back side illuminations, against Ir-Pi deposition time. The thesis ends with a short summary and future prospectus of studies described in the thesis. The research work presented in the thesis is carried out by the candidate as the part of Ph.D. program. Some of the results have already been published in the literature and some manuscripts are under preparation. A list of publications is included at the end of the thesis. It is anticipated that the studies reported in the thesis will constitute a worthwhile contribution.

Page generated in 0.0998 seconds