• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Variability in Long-Wave Runup as a Function of Nearshore Bathymetric Features

Dunkin, Lauren M. 2010 May 1900 (has links)
Beaches and barrier islands are vulnerable to extreme storm events, such as hurricanes, that can cause severe erosion and overwash to the system. Having dunes and a wide beach in front of coastal infrastructure can provide protection during a storm, but the influence that nearshore bathymetric features have in protecting the beach and barrier island system is not completely understood. The spatial variation in nearshore features, such as sand bars and beach cusps, can alter nearshore hydrodynamics, including wave setup and runup. The influence of bathymetric features on long-wave runup can be used in evaluating the vulnerability of coastal regions to erosion and dune overtopping, evaluating the changing morphology, and implementing plans to protect infrastructure. In this thesis, long-wave runup variation due to changing bathymetric features as determined with the numerical model XBeach is quantified (eXtreme Beach behavior model). Wave heights are analyzed to determine the energy through the surfzone. XBeach assumes that coastal erosion at the land-sea interface is dominated by bound long-wave processes. Several hydrodynamic conditions are used to force the numerical model. The XBeach simulation results suggest that bathymetric irregularity induces significant changes in the extreme long-wave runup at the beach and the energy indicator through the surfzone.
2

Der Auflauf unregelmäßiger Wellen im Übergangsbereich zwischen Branden und Schwingen

Heyer, Torsten, Pohl, Reinhard 11 February 2015 (has links) (PDF)
Der bisher noch wenig untersuchte Wellenaufgang im Übergangsbereich zwischen Brandung und Reflexion wurde experimentell untersucht. Darauf aufbauend wird ein geschlossener Berechnungsansatz für die Auflaufhöhe unregelmäßiger Wellen vorgeschlagen, der für brechende und nichtbrechende Wellen anwendbar ist.
3

Morphodynamics of beach-dune systems laden with large woody debris: Haida Gwaii (Queen Charlotte Islands), British Columbia

Anderson, Jeffrey 22 February 2010 (has links)
This thesis explores the geomorphic implications of large woody debris (LWD) residing in the backshore of beach-dune systems along the northeastern coasts of Haida Gwaii (Queen Charlotte Islands), British Columbia, Canada. Detailed topographic surveys were employed to quantify seasonal mass balance of the beach-dune systems along two distinctly different coastlines. Erosion and accretion potential models were applied to characterize sediment transport conditions. Holman’s (1986) R2% wave runup model was superimposed on total water levels, to model wave runup exceedence of the beach-dune junction elevation (6.5 m aCD). Modelled ‘erosion potential’ hours were demonstrated to correspond with observed erosion including removal of the LWD zone, resulting in decreased mass balance. Similarly, Fryberger and Dean’s (1979) Drift Potential model was used to model accretion potential hours. Modelled accretion potential hours were also able to effectively describe conditions when actual accretion occurred. The presence of LWD in the backshore offered two functions to the above processes: it acted effectively as an ‘accretion anchor’, promoting increased mass balance and rebuilding of the incipient foredune; and, it offered a mass of sediment fronting the foredune to protect the beach-dune system from storm wave attack and subsequent erosion.
4

Der Auflauf unregelmäßiger Wellen im Übergangsbereich zwischen Branden und Schwingen

Heyer, Torsten, Pohl, Reinhard January 2003 (has links)
Der bisher noch wenig untersuchte Wellenaufgang im Übergangsbereich zwischen Brandung und Reflexion wurde experimentell untersucht. Darauf aufbauend wird ein geschlossener Berechnungsansatz für die Auflaufhöhe unregelmäßiger Wellen vorgeschlagen, der für brechende und nichtbrechende Wellen anwendbar ist.
5

Analytical Solutions Of Shallow-water Wave Equations

Aydin, Baran 01 June 2011 (has links) (PDF)
Analytical solutions for the linear and nonlinear shallow-water wave equations are developed for evolution and runup of tsunamis &ndash / long waves&ndash / over one- and two-dimensional bathymetries. In one-dimensional case, the nonlinear equations are solved for a plane beach using the hodograph transformation with eigenfunction expansion or integral transform methods under different initial conditions, i.e., earthquake-generated waves, wind set-down relaxation, and landslide-generated waves. In two-dimensional case, the linear shallow-water wave equation is solved for a flat ocean bottom for initial waves having finite-crest length. Analytical verification of source focusing is presented. The role of focusing in unexpectedly high tsunami runup observations for the 17 July 1998 Papua New Guinea and 17 July 2006 Java Island, Indonesia tsunamis are investigated. Analytical models developed here can serve as benchmark solutions for numerical studies.
6

A New Technique for Measuring Runup Variation Using Sub-Aerial Video Imagery

Salmon, Summer Anne January 2008 (has links)
Video monitoring of beaches is becoming the preferred method for observing changes to nearshore morphology. Consequently this work investigates a new technique for predicting the probability of inundation that is based on measuring runup variation using video. Runup is defined as the water-level elevation maxima on the foreshore relative to the still water level and the waterline is defined as the position where the MWL intersects the beach face. Tairua, and Pauanui Beaches, on the north east coast of the North Island of New Zealand, were used as the field site in this study and represent two very different beaches with the same incoming wave and meteorological conditions. Tairua is most frequently in an intermediate beach state, whereas Pauanui is usually flatter in nature. In order to rectify runup observations, an estimate of the runup elevation was needed (Z). This was estimated by measuring the variation of the waterline over a tidal cycle from time-averaged video images during a storm event and provided beach morphology statistics (i.e. beach slope (α) and beach intercept (b)) used in the rectification process where Z=aX+b. The maximum swash excursions were digitized from time-stacks, and rectified to provide run-up timeseries with duration 20 minutes. Field calibrations revealed a videoed waterline that was seaward of the surveyed waterline. Quantification of this error gave a vertical offset of 0.33m at Tairua and 0.25m at Pauanui. At Tairua, incident wave energy was dominant in the swash zone, and the runup distributions followed a Rayleigh distribution. At Pauanui, the flatter beach, the runup distributions were approximately bimodal due to the dominance of infragravity energy in the swash signal. The slope of the beach was a major control on the runup elevation; runup at Pauanui was directly affected by the deepwater wave height and the tide, while at Tairua there was no correlation. Overall, the results of the study indicate realistic runup measurements, over a wide range of time scales and, importantly, during storm events. However, comparisons of videoed runup and empirical runup formulae revealed larger deviations as the beach steepness increased. Furthur tests need to be carried out to see if this is a limitation of this technique, used to measure runup. The runup statistics are consistently higher at Tairua and suggests that swash runs up higher on steeper beaches. However, because of the characteristics of flatter beaches (such as high water tables and low drainage efficiencies) the impact of extreme runup elevations on such beaches are more critical in regards to erosion and/ or inundation. The coastal environment is of great importance to Māori. Damage to the coast and coastal waahi tapu (places of spiritual importance) caused by erosion and inundation, adversely affects the spiritual and cultural well-being of Māori. For this reason, a chapter was dedicated to investigating the practices used by Māori to protect and preserve the coasts in accordance with tikanga Māori (Māori protocols). Mimicking nature was and still is a practice used by Māori to restore the beaches after erosive events, and includes replanting native dune plants and using natural materials on the beaches to stabilize the dunes. Tapu and rahui (the power and influence of the gods) were imposed on communities to prohibit and prevent people from free access to either food resources or to a particular place, in order to protect people and/ or resources. Interpretations of Māori oral histories provide insights into past local hazards and inform about the safety and viability of certain activities within an area. Environmental indicators were used to identify and forecast extreme weather conditions locally. Māori knowledge of past hazards, and the coastal environment as a whole, is a valuable resource and provides a unique source of expertise that can contribute to current coastal hazards management plans in New Zealand and provide insights about the areas that may again be impacted by natural hazards.
7

Simple Models For Predicting Dune Erosion Hazards Along The Outer Banks Of North Carolina

Wetzell, Lauren McKinnon 13 November 2003 (has links)
Hurricane hazards result from the combined processes of wind, waves, storm surge, and overwash (Lennon et al., 1996). Predicting the severity of these hazards requires immense effort to quantify the processes and then predict how different coastal regions respond to them. A somewhat simpler, but no less daunting task is to begin to predict the hazards due to potential erosion of barrier islands. A four-part scale has been developed by Sallenger (2000) to provide a framework for understanding how barrier islands might respond during extreme storm events. These four regimes describe how beach and dune elevations interact with surge and wave runup. This study will produce estimates of potential hazards through combining lidar surveys of dune elevation with modeled elevations of storm water levels. Direct measurements of maximum wave heights during hurricanes are rare. We evaluated three simple equations proposed by Kjerfve (1986), Young (1988), and Hsu (1998) to forecast the maximum wave height (Hmax) generated by three 1999 hurricanes. Model results were compared to wave data recorded by the National Oceanic and Atmospheric Administration (NOAA) wave rider buoys. The radius of maximum winds, wind speed, forward velocity, distance from buoy to the storm's eye-wall (r), and buoy's position relative to the quadrant of the storm (Q) were found to have significant and direct roles in evaluating recorded hurricane induced wave heights (H) and thus, were individually examined for each comparison. The implications of the r and Q on H were assessed when determining the overall effectiveness of the modelers' equations. Linear regression analyses tested the accuracy of each modeled prediction of the Hmax, comparing it to the observed wave heights. Three statistical criteria were used to quantify model performance. Hsu's model was the most reliable and useful forecasting technique. Despite the predictive skill of Hsu's model, direct observations of the maximum wave conditions, when available and appropriate, are preferred as inputs for SWAN, a 3rd generation shoaling wave model. Outputs from SWAN are used to calculate the empirical relationships for wave runup. For our test case, pre and post-storm topographies were surveyed as part of a joint USGS-NASA program using lidar technology. These data sets were used to calculate changes in the elevation and location of the dune crest (Dhigh) and dune base (Dlow) for the North Carolina Outer Banks. We hindcast potential coastal hazards (erosional hot spots) using the pre-storm morphology and modeled wave runup and compare those estimates to the measured results from the post-storm survey. Links among the existing topography and spatial variations in wave runup were found to be 95% correlated for the north-south and east-west facing barrier islands. Application of Sallenger's (2000) four-part Storm Impact Scale to the pre-storm Dhigh elevation survey and wave runup extremes (Rhigh and Rlow) were found to accurately predict zones of overwash and showed potential to forecast the inundation regime.
8

Simple models for predicting dune erosion hazards along the Outer Banks of North Carolina [electronic resource] / by Lauren McKinnon Wetzell.

Wetzell, Lauren McKinnon. January 2003 (has links)
Title from PDF of title page. / Document formatted into pages; contains 84 pages. / Thesis (M.S.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: Hurricane hazards result from the combined processes of wind, waves, storm surge, and overwash (Lennon et al., 1996). Predicting the severity of these hazards requires immense effort to quantify the processes and then predict how different coastal regions respond to them. A somewhat simpler, but no less daunting task is to begin to predict the hazards due to potential erosion of barrier islands. A four-part scale has been developed by Sallenger (2000) to provide a framework for understanding how barrier islands might respond during extreme storm events. These four regimes describe how beach and dune elevations interact with surge and wave runup. This study will produce estimates of potential hazards through combining lidar surveys of dune elevation with modeled elevations of storm water levels. Direct measurements of maximum wave heights during hurricanes are rare. / ABSTRACT: We evaluated three simple equations proposed by Kjerfve (1986), Young (1988), and Hsu (1998) to forecast the maximum wave height (Hmax) generated by three 1999 hurricanes. Model results were compared to wave data recorded by the National Oceanic and Atmospheric Administration (NOAA) wave rider buoys. The radius of maximum winds, wind speed, forward velocity, distance from buoy to the storm's eye-wall (r), and buoy's position relative to the quadrant of the storm (Q) were found to have significant and direct roles in evaluating recorded hurricane induced wave heights (H) and thus, were individually examined for each comparison. The implications of the r and Q on H were assessed when determining the overall effectiveness of the modelers' equations. Linear regression analyses tested the accuracy of each modeled prediction of the Hmax, comparing it to the observed wave heights. Three statistical criteria were used to quantify model performance. / ABSTRACT: Hsu's model was the most reliable and useful forecasting technique. Despite the predictive skill of Hsu's model, direct observations of the maximum wave conditions, when available and appropriate, are preferred as inputs for SWAN, a 3rd generation shoaling wave model. Outputs from SWAN are used to calculate the empirical relationships for wave runup. For our test case, pre and post-storm topographies were surveyed as part of a joint USGS-NASA program using lidar technology. These data sets were used to calculate changes in the elevation and location of the dune crest (Dhigh) and dune base (Dlow) for the North Carolina Outer Banks. We hindcast potential coastal hazards (erosional hot spots) using the pre-storm morphology and modeled wave runup and compare those estimates to the measured results from the post-storm survey. / ABSTRACT: Links among the existing topography and spatial variations in wave runup were found to be 95% correlated for the north-south and east-west facing barrier islands. Application of Sallenger's (2000) four-part Storm Impact Scale to the pre-storm Dhigh elevation survey and wave runup extremes (Rhigh and Rlow) were found to accurately predict zones of overwash and showed potential to forecast the inundation regime. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
9

Extreme waves, overtopping and flooding at sea defences

Raby, Alison Caroline January 2003 (has links)
This thesis describes experiments that were carried out using focused wave groups in the UK Coastal Research Facility (UKCRF). Considerable effort was put into calibrating the UKCRF to determine the relationship between the input signals sent to the paddles and the waves generated in the facility. Focused wave groups of various sizes and phases, based on NewWave theory were generated, and measurements were made of the resulting surface elevation data, water particle kinematics, wave runup and overtopping volumes. NewWave theory models the profile of extreme waves in a Gaussian (random) sea. The thesis describes the first time this model has been applied in the context of coastal wave transformation. A method for the separation of the underlying harmonic structure of a focused wave group is described and results presented. This technique has been used in relatively deep water but is shown to work successfully in the coastal zone until wave overturning. A method has been devised to provide a theoretical Stokes-like expansion of the free and bound waves to model the surface elevation and water particle kinematics of the focused wave groups. Satisfactory agreement is achieved between the theoretical predictions of UKCRF measurements. Suggestions are made for an improved model. The underlying harmonic structure of the focused wave groups is presented as stacked time histories that give insight into the wave transformation process from deep to shallow water. Particular attention is paid to the low frequency wave generated as the wave group interacts with the beach. This is compared to the low frequency wave that is generated by a solitary wave in the UKCRF. Runup and overtopping measurements are in reasonable agreement with predictions based on certain empirical formulae, but not others. These comparisons are useful in identifying those formulae able to predict runup and overtopping of extreme waves in the coastal zone.

Page generated in 0.0393 seconds