• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude expérimentale de la turbulence d’ondes à la surface d’un fluide. La théorie de la turbulence faible à l’épreuve de la réalité pour les ondes de capillarité et gravité / Experimental study of wave turbulence on the surface of a fluid. The theory of the weak turbulence against reality for capillary and gravity waves

Aubourg, Quentin 18 October 2016 (has links)
La turbulence d’onde cherche à apporter une description statistique des interactions d’un ensemble d’ondes faiblement non-linéaires. Initiée dans les années 1960 par les travaux de Zakharov et de Hasselmann, cette théorie est régulièrement mise en défaut par les observations expérimentales, en particulier dans le régime d’ondes de gravité ainsi qu’aux abords de la transition gravito-capillaire. L’objectif de cette thèse est d’étudier expérimentalement ces deux régimes en analysant directement les interactions résonantes qui sont le cœur de la théorie de la turbulence faible. Une première expérience concerne le régime gravito-capillaire. Une cascade d’énergie constituée d’ondes faiblement linéaires est observée en accord avec la phénoménologie de la turbulence faible. L’utilisation d’outils statistiques d’ordre supérieur a permis de montrer que ce sont des interactions à 3-ondes essentiellement colinéaires qui gouvernent la cascade. La seconde expérience explore le régime gravitaire dans la plateforme de Coriolis. Le spectre de puissance montre la présence systématique d’une branche harmonique qui reste faible devant la composante linéaire. Les corrélations indiquent la présence d’interactions à 3-ondes entre la branche linéaire et la branche harmonique. Aucune interaction à 4-ondes comme le prévoit la théorie n’est observée. La dernière partie rapporte les résultats d’une expérience sur des ondes internes ainsi qu’une campagne de mesure in-situ de la mer Noire dont les données ont été mises à disposition par F. Ardhuin. Ces deux expériences confirment les résultats de la partie précédente et soulèvent la question de l’importance des interactions à 3-ondes avec la branche harmonique pour la génération de la cascade en régime de gravité… / The wave turbulence provides a statistical description of the interactions of a large set of weakly non-linear waves. Introduced in the 1960s by the works of Zakharov and Hasselmann, this theory often fails against experiments, particularly for gravity waves and at the crossover for capillary-gravity waves. The objective of this PhD is to study experimentally these two regimes by looking directly at the resonant interactions that are the heart of the weak turbulence theory. The first experiment focuses on the capillary-gravity regime. An energy cascade composed of weakly linear waves is observed in agreement with the phenomenology of the theory. The use of higher order statistical tools shows that it is essentially 3-waves collinear interaction that govern the cascade. The second experiment explores the pure gravity regime thanks to the large dimensions of the Coriolis platform. The full energy spectrum shows the systematic presence of the harmonic branch, although it remains small compared to the linear component. The correlations indicate the presence of strong 3-waves interactions between the linear branch and the harmonics branches. No 4-waves interaction as assumed by the theory is observed. The last section reports the results from an experiment on internal waves and from in situ data of the Black Sea made available by F. Ardhuin. These two experiments confirm the results of the previous section and raise the question of the importance of the 3-wave interaction with the harmonic branch for generating the energy cascade in the gravity wave regime…
2

Self-organization of isotopic and drift-ware turbulence

Pushkarev, Andrey 18 December 2013 (has links)
Pas de résumé / In order to give a general statistical description of turbulence, one tries to identify universal statistical features, common to a wider class of turbulent flows. In 1988, Kraichnan and Panda discovered one such possibly universal feature, namely, the fact that Navier-Stokes turbulence tends to reduce the strength of the nonlinearity in its governing equations. In the flrst part of the manuscript we consider the strength of the nonlinear term and, more precisely, of its fluctuations in isotropic turbulence. In order to measure this strength, we compare to the case of a flow fleld with the same energy distribution where the modes are statistically independent, as is the case in Gaussian noise. It is shown that the turbulent flow self-organizes towards a state in which the nonlinearity is reduced, and it is discussed what the implications of this reduction are. Also, in two dimensions it is illustrated how this self-organization manifests itself through the appearance of well-deflned vortical flow structures. In the second part of the manuscript, we investigate the dynamics of the Hasegawa- Wakatani model, a model relevant in the study of magnetically conflned fusion plasmas. The two-dimensional version of this model is considered, which includes some key features of the turbulent dynamics of a tokamak-edge. We consider the limit of the model in which the nonlinearity is reduced with respect to the linear forces. For this weakly nonlinear, wave dominated regime, analytical predictions suggest the presence of a feedback loop in which energy is transferred to highly anisotropic zonal flows by nonlocal interactions. We confirm these predictions and we demonstrate a strong suppression of the turbulent radial particle flux. In wall bounded geometry, the same mechanism is observed and here also the flux is eflciently reduced by the turbulence-zonal flow interaction.
3

Cascades d’énergie et turbulence d’ondes dans une expérience de turbulence en rotation / Energy cascades and wave turbulence in a rotating turbulence experiment

Campagne, Antoine 09 July 2015 (has links)
Nous présentons une étude expérimentale de l’effet d’une rotation d’ensemble sur les écoulements turbulents statistiquement stationnaires. Dans une première expérience, l’écoulement est entretenu à l’aide de générateurs de tourbillons contrarotatifs agissant de manière périodique dans une cuve en rotation remplie d’eau. Des mesures résolues en temps des trois composantes de la vitesse sont réalisées, dans des plans horizontaux et verticaux, à l’aide d’un dispositif de vélocimétrie stéréoscopique par images de particules embarqué dans le référentiel tournant. L’écoulement étudié présente, conformément à la littérature, une forte anisotropie et montre l’émergence d’un mode 2D énergétique. Pour la première fois expérimentalement, nous décrivons le bilan global d’énergie entre échelles d’une turbulence en rotation à travers la mesure des termes de l’équation de Kármán-Howarth-Monin généralisée au cas inhomogène. Nous mettons ainsi en évidence la présence d’une double cascade d’énergie : directe à petite échelle et inverse à grande échelle, l’échelle de renversement des cascades étant décroissante avec le taux de rotation. Nous évaluons ensuite la puissance injectée qui est intrinsèquement liée au caractère inhomogène de l’écoulement. L’injection d’énergie provient de l’auto-advection des structures turbulentes traversant les frontières de la zone de contrôle. Elle est large bande en échelles et s’étale à mesure que la rotation croît. Nous nous intéressons ensuite à la pertinence des modèles de turbulence d’ondes d’inertie. Nous réalisons tout d’abord une analyse spatio-temporelle qui révèle la présence d’ondes d’inertie linéaires à grande échelle spatiale et grande fréquence temporelle. En revanche, nous montrons que la signature spatio-temporelle des structures turbulentes associées aux échelles et fréquences faibles est brouillée par le processus linéaire de balayage stochastique par le mode 2D énergétique. Dans une seconde expérience, l’écoulement est engendré par une hélice constituée de quatre pales rectangulaires dans une cuve fermée en rotation. Nous évaluons le taux de dissipation d’énergie à travers la mesure de la puissance injectée par le moteur qui entraîne l’hélice. Nous fournissons alors, pour la première fois, une preuve directe de la loi d’échelle du taux de dissipation d’énergie prédite par la turbulence d’onde d’inertie qui est diminuée d’un facteur Rossby par rapport à la loi d’échelle de la turbulence 3D homogène et isotrope. / We present an experimental study of the effect of global rotation on statistically stationary turbulent flows. In a first experiment, the flow is generated with counter-rotating vortex generators acting in a periodic motion in a rotating tank filled with water. Resolved in time measurements of the three component of the velocity are performed, in both horizontal and vertical planes, thanks to a stereoscopic particle image velocimetry system embarked in the rotating frame. The flow has, in accordance with the bibliography, a strong anisotropy and shows the emergence of an energetic 2D flow. For the first time experimentally, we describe the global scale by scale energy budget of a rotating turbulence through the measure of the terms of the inhomogeneous generalization of Kármán-Howarth-Monin equation. We thus reveal a double energy cascade: direct at small scale and inverse at large scale, the scale of cascade reversal decreasing with the rotation rate. Then, we evaluate the injected power into the system which is intrinsically linked to the inhomogeneities of the flow. The energy input comes from auto-advection of turbulent structures through the boundaries of the area considered. It is broadband in scales and spreads as ration increases. We then focus on relevance of inertial wave turbulence models. We first perform a spatiotemporal analysis which reveals the presence of linear inertial waves at large frequencies and scales. However, we show that the spatiotemporal signature of small frequencies and scales are scrambled by the linear process of stochastic sweeping by the 2D energetic mode. In a second experiment, the flow is created thanks to a four-rectangular-blade impeller in a closed rotating tank. We estimate the energy dissipation rate through the measure of the injected power by the motor that drives the impeller. We then bring, for the first time, a direct evidence of the scaling law predicted by inertial wave turbulence models which is fallen by a factor Rossby compared to the scaling law of 3D homogeneous isotropic turbulence.
4

Internal wave attractors : from geometrical focusing to non-linear energy cascade and mixing / Attracteurs d’ondes internes : de la focalisation géométrique à la cascade d’énergie non-linéaire et au mélange

Brouzet, Christophe 01 July 2016 (has links)
La cascade d’énergie qui a lieu dans les océans, depuis les grandes vers les petites échelles, est capitale pour comprendre leur dynamique et le mélange irréversible associé. Les attracteurs d’ondes internes font partie des mécanismes conduisant potentiellement à une telle cascade. Dans ce manuscrit, nous étudions expérimentalement les attracteurs d’ondes internes, dans une cuve trapézoïdale remplie d’un fluide stratifié linéairement en densité. Dans cette géométrie, les ondes peuvent être focalisées vers un cycle limite : l’attracteur. Nous montrons que la formation de l’attracteur est purement linéaire : des petites échelles sont donc créées grâce à la focalisation des ondes. Les principales caractéristiques de l’attracteur dépendent uniquement de la géométrie trapézoïdale de la cuve. A l’échelle de l’océan, nous montrons que les attracteurs d’ondes internes sont très probablement instables. En effet, ceux-ci sont sujets à une instabilité de résonance triadique, qui transfère de l’énergie depuis l’attracteur vers un couple d’ondes secondaires. Cette instabilité et ses principales caractéristiques sont décrites en fonction de la géométrie du bassin. Pour des expériences de longue durée, l’instabilité produit plusieurs paires d’ondes secondaires, créant une cascade d’instabilités triadiques et transférant l’énergie injectée à grandes échelles vers des échelles plus petites. Nous montrons, pour la première fois de façon expérimentale, de très fortes signatures de turbulence d’ondes internes. Au delà de cet état, la cascade atteint un régime de mélange partiel du fluide stratifié. Cet ultime régime apparait indépendant de la géométrie trapézoïdale du bassin, et donc, universel. Cette thèse est complétée par une étude sur la masse ajoutée et l’amortissement par émission d’ondes d’objets oscillant horizontalement dans un fluide stratifié en densité. Cela a des applications concernant la conversion de l’énergie des marées en ondes internes. / A question of paramount importance in the dynamics of oceans is related to the energy cascade from large to small scales and its contribution to mixing. Internal wave attractors may be one of the possible mechanisms responsible for such a cascade. In this manuscript, we study experimentally internal wave attractors in a trapezoidal test tank filled with linearly stratified fluid. In such a geometry, the waves can form closed loops called attractors. We show that the attractor formation is purely linear: small scales are thus created by wave focusing. The attractor characteristics are found to only depend on the trapezoidal geometry of the tank. At the ocean scale, we show that attractors are very likely to be unstable. Indeed, internal wave attractors are prone to a triadic resonance instability, which transfers energy from the attractor to a pair of secondary waves. This instability and its main characteristics are described as a function of the geometry of the basin. For long-term experiments, the instability produces several pairs of secondary waves, creating a cascade of triadic interactions and transferring energy from large-scale monochromatic input to multi-scale internal-wave motion. We reveal, for the first time, experimental convincing signatures of internal wave turbulence. Beyond this cascade, we have a mixing regime, which appears to be independent of the trapezoidal geometry and, thus, universal. This manuscript is completed by a study on added mass and wave damping coefficient of bodies oscillating horizontally in a stratified fluid, with applications to tidal conversion.
5

Auto-organisation d’ondes optiques incohérentes : Condensation, thermalisation et repolarisation / Self-organization of incoherent optical waves : Condensation, thermalization and repolarization

Fusaro, Adrien 01 October 2019 (has links)
Le sujet de cette thèse porte sur les phénomènes d’auto-organisations d’ondes optiques non-linéaires. Ce travail principalement théorique et numérique repose sur différents formalismes de turbulenced’ondes, les singularités Hamiltoniennes et diverses expériences.Une première partie de la thèse porte sur les processus irréversibles de thermalisation et de conden-sation d’ondes. Le phénomène de condensation se caractérise par la formation d’une structure cohérenteà grande échelle (condensat) qui reste immergée dans une mer de fluctuations aux petites échelles (parti-cules non condensées). En dépit des longueurs de propagation rédhibitoires pour atteindre l’état d’équilibrecondensé, nous avons mis en évidence expérimentalement et théoriquement un phénomène de pré-condensation qui a lieu loin de l’équilibre etqui joue un rôle précurseur pour l’état d’équilibre asymptotique. Par ailleurs, sur la base d’observations ex-périmentales récentes du phénomène de nettoyage de faisceau dans une fibre optique multimode, nousavons développé une approche cinétique de turbulence d’ondes prenant en compte le désordre structu-rel du matériau. La théorie révèle que le désordre entraîne une accélération significative du processus decondensation permettant d’expliquer l’effet de nettoyage de faisceau. Les expériences effectuées reportentl’observation d’une transition de la distribution thermique vers la condensation, avec une fraction macro-scopique de puissance condensée dans le mode fondamental. Nous avons aussi étudié l’impact d’une ré-ponse fortement non-locale (ou non-instantanée) sur la propagation d’un speckle, ce qui a permis d’iden-tifier un mécanisme d’émergence spontanée de cohérence de phase à longue portée.Une seconde partie des travaux est centrée sur le phénomène d’attraction de polarisation lors de l’in-jection d’ondes incohérentes aux deux extrémités d’une fibre optique. La dynamique spatio-temporelle desondes partiellement polarisées contra-propagatives relaxe vers un état stationnaire où se produit un phé-nomène d’auto-polarisation survenant au point milieu de la fibre. Ce phénomène est lié à la présence desingularités dans le système Hamiltonien associé à l’état stationnaire. / The subject of this thesis concerns the study of phenomena of self-organization of incoherentoptical waves. This work is essentially theoretical and numerical and relies on different formalisms of waveturbulence theory, the Hamiltonian singularities, and different experiments.The first part of the thesis deals with the irreversible processes of thermalization and condensation ofincoherent waves. The phenomenon of condensation is characterized by the formation of a large scale co-herent structure (condensate) that remains immersed in a sea of small scale fluctuations (uncondensedparticules). In spite of the large propagation lengths required to reach the condensed equilibrium state, wehave identified theoretically and experimentally in atomic vapors a phenomenon of pre-condensation thatoccurs far from thermal equilibrium and that plays the role of a precursor for the asymptotic equilibriumstate. On the other hand, on the basis of recent experimental observations of the effect of beam self-cleaningin multimode optical fibers, we have developed a kinetic wave turbulence approach that accounts for theimpact of a structural disorder of the material. The theory reveals that disorder leads to a significant ac-celeration of the condensation process, which can explain the beam self-cleaning effect. Our experimentsreport the observation of the transition from the thermal distribution toward condensation with a macro-scopic fraction of condensed power into the fundamental mode. We have studied the impact of a highlynonlocal (or non-instantaneous) response on the nonlinear propagation of a speckle beam, which allowedus to identify a mechanism of spontaneous emergence of long-range phase coherence.The second part of the manuscript is based on a phenomenon of polarization attraction when two in-coherent waves are injected at both ends of an optical fiber. The spatio-temporal dynamics of the counter-propagating partially polarized waves relax toward a quasi-stationary state characterized by a phenomenonof self-polarization that occurs just in the middle point of the optical fiber. This effect is related to the pre-sence of singularities in the Hamiltonian system associated to the stationary state.
6

Parois et ondes de surface : dissipation, effet Doppler et interactions non linéaires / Solid boundaries and surface waves : dissipation, Doppler effect and nonlinear interactions

Michel, Guillaume 06 September 2017 (has links)
Dans cette thèse, nous étudions comment la présence de parois affecte les ondes de surface. La dissipation associée au mouillage, objet central des premiers chapitres, est abordée expérimentalement. Nous mesurons son évolution avec la taille du ménisque et montrons qu’en mouillage total des non-linéarités apparaissent dès que l’oscillation du ménisque atteint l’épaisseur des couches limites. Dans un deuxième temps, nous quantifions les échanges d’énergie ayant lieu lors de laréflexion d’une onde de surface sur une paroi oscillante, appelés effet Doppler généralisé. Après une mise en évidence expérimentale, une approche théorique les évalue et illustre comment leurs effets cumulatifs peuvent mener à des spectres en compétition avec ceux de la turbulence d’ondes. Finalement, nous traitons les interactions entre paquets d’ondes. En géométrie confinée, nous montrons que des résonances à trois ondes gravitaires sont autorisées. Dépassant la problématique des parois, nous caractérisons les interactions entre ondes gravitaires en milieu infini, puis décrivons les grandes échelles de la turbulence d’ondes capillaire. / In this thesis, we study the impact of solid boudaries on surface waves. We first consider the dissipation caused by dynamical wetting. We experimentally show how the damping of surface waves evolves with the size of the meniscus and demonstrate that in perfect wetting it leads to a nonlinear behavior as soon as the meniscus oscillation amplitude compares to the thickness of the boundary layer. Secondly, we investigate energy exchanges through scales occuring when a surface wave reflects on an oscillating wall, the so-called generalized Doppler effect. We evidence the creation of Doppler-shifted waves, compute their amplitudes and illustrate how the continuous bouncing of surface waves on wavemakers may lead to self-similar spectra competing with the ones of wave turbulence. Finally, we focus on nonlinear interaction between surface waves. We prove that gravity waves can undergo triad resonances in confined geometry. Going beyond the consequencies of solid boundaries, we perform experiments on four-wave interactions in the gravity regime and describe large scales in capillary wave turbulence.
7

Studies Of Spiral Turbulence And Its Control In Models Of Cardiac Tissue

Shajahan, T K 02 1900 (has links)
There is a growing consensus that life-threatening cardiac arrhythmias like ventricular tachycardia (VT) or ventricular fibrillation (VF) arise because of the formation of spiral waves of electrical activation in cardiac tissue; unbroken spiral waves are associated with VT and broken ones with VF. Several experimental studies have shown that inhomogeneities in cardiac tissue can have dramatic effects on such spiral waves. In this thesis we try to understand these experimental results by carrying out detailed and systematic studies of the interaction of spiral waves with different types of inhomogeneities in mathematical models for cardiac tissue. In Chapter 1 we begin with a general introduction to cardiac arrhythmias, the cardiac conduction system, and the connection between electrical activation waves in cardiac tissue and cardiac arrhythmias. As we have noted above, VT and VF are believed to be associated with spiral waves of electrical activation on cardiac tissue; such spiral waves form because cardiac tissue is an excitable medium. Thus we give an overview of excitable media, in which sub-threshold perturbations decay but super-threshold perturbations lead to an action potential that consists of a rapid stage of depolarization of cardiac cells followed by a slow phase of repolarization. During this repolarization phase the cells are refractory. We then give an overview of earlier studies of the effects of inhomogeneities in cardiac tissue; and we end with a brief description of the principal problems we study here. Chapter 2 describes the models we use in our work. We start with a general introduction to the cable equation and then discuss the Hodgkin-Huxley-formalism for the transport of ions across a cell membrane through voltage-gated ion channels. We then describe in detail the three models that we use for cardiac tissue, which are, in order of increasing complexity, the Panfilov model, the Luo Rudy Phase I (LRI) model, and the reduced Priebe Beuckelmann (RPB)model. We then give the numerical schemes we use for solving these model equations and the initial conditions that lead to the formation of spiral waves. For all these models we give representative results from our simulations and compare the states with spiral turbulence. In Chapter 3 we investigate the effects of conduction inhomogeneities (obstacles) in the three models introduced in Chapter 2. We outline first the experimental results that have provided the motivation for our study. We then discuss how we introduce obstacles in our simulations of the Panffilov, LRI, and RPB models for cardiac tissue. Next we present the results of our numerical studies of the effects, on spiral-wave dynamics, of the sizes, shapes, and positions of the obstacles. Our Principal result is that spiral-wave dynamics in these models depends sensitively on the position of the obstacle. We find, in particular, that, merely by changing the position of a conduction inhomogeneity, we may convert spiral turbulence (the analogue in our models of VF) to a single rotating spiral (the analogue of VT) anchored to the obstacle or vice versa; even more exciting is the possibility that, at the boundary between these two types of behaviour, we find a quiescent state Q with no spiral waves. Thus our study obtains all the possible qualitative behaviours found in experiments, namely, (1) VF might persist even in the presence of an obstacle, (2) it might be suppressed partially and become VT, or (3) it might be eliminated completely. In Chapter 4 we extend our work on conduction inhomogeneities (Chapter 3) to ionic inhomogeneities. Unlike conduction inhomogeneities, ionic inhomogeneities allow the conduction of activation waves. We find, nevertheless, that they too can lead to the anchoring of spiral waves or even the complete elimination of spiral-wave turbulence. Since spiral waves can enter the region in which there is an ionic inhomogeneity, their behaviours in the presence of such an inhomogeneity are richer than those with conduction inhomogeneities. We find, in particular, that a single spiral wave anchored at an ionic inhomogeneity can show temporal evolution that may be periodic, quasiperiodic, or even chaotic. In the last case the spiral wave shows a chaotic pattern inside the ionic inhomogeneity and a regular one outside it. Defibrillation is the control of arrhythmias such as VF. Most often defibrillation is effected electrically by administering a shock, either externally or via an internally implanted defibrillator. The development of low-amplitude defibrillation schemes, which minimise the deleterious effects of the applied shock, is a major challenge in the treatment of cardiac arrhythmias. Numerical studies of models for cardiac tissue provide us with convenient means of studying the elimination of spiral-wave turbulence by the application of external electrical stimuli; this is the numerical analogue of defibrillation. Over the years some low-amplitude defibrillation schemes have been suggested on the basis of such numerical studies. In Chapter 5 we discuss two such schemes that have been shown to suppress spiral-wave turbulence in two-dimensional models for cardiac tissue and also scroll-wave turbulence in three-dimensional models. One of these schemes uses local electrical pacing, typically in the centre of the simulation domain; the other applies the external electrical stimuli over a mesh. We study the efficacy of these schemes in the presence of conduction inhomogeneities. We find, in particular, that the local-pacing scheme, though effective in a homogeneous simulation domain, fails to control spiral turbulence in the presence of an obstacle and, indeed, might even facilitate spiral-wave break up. By contrast, the second scheme, which uses a mesh, succeeds in eliminating spiral-wave turbulence even in the presence of an obstacle. We end with some concluding remarks about the possible experimental implications of our study in Chapter 6.
8

Spiral-Wave Dynamics in Ionically Realistic Mathematical Models for Human Ventricular Tissue

Nayak, Alok Ranjan January 2013 (has links) (PDF)
There is a growing consensus that life-threatening cardiac arrhythmias like ven- tricular tachycardia (VT) or ventricular fibrillation (VF) arise because of the formation of spiral waves of electrical activation in cardiac tissue; unbroken spiral waves are associated with VT and broken ones with VF. Several experimental studies have shown that in homogeneities in cardiac tissue can have dramatic effects on such spiral waves. In this thesis we focus on spiral-wave dynamics in mathematical models of human ventricular tissue which contain (a) conduction in homogeneities, (b) ionic in- homogeneities, (c) fibroblasts, (d) Purkinje fibers. We also study the effect of a periodic deformation of the simulation domain on spiral wave-dynamics. Chapter 2 contains our study of “Spiral-Wave Dynamics and Its Control in the Presence of In homogeneities in Two Mathematical Models for Human Cardiac Tissue”; this chapter follows closely parts of a paper we have published [1]. Chapter 3 contains our study of “Spiral-wave dynamics in a Mathematical Model of Human Ventricular Tissue with Myocytes and Fibroblasts”; this chapter follows closely a paper that we have submitted for publication. Chapter 4 contains our study of “Spiral-wave Dynamics in Ionically Realistic Mathematical Models for Human Ventricular Tis- sue: The Effects of Periodic Deformation”; this chapter follows closely a paper that we have submitted for publication. Chapter 5 contains our study of “Spiral-wave dynamics in a Mathematical Model of Human Ventricular Tissue with Myocytes and Purkinje fibers”; this chapter follows closely a paper that we will submit for publication soon. In chapter 2, we study systematically the AP morphology in a state-of-the-art mathematical model of human ventricular tissue due to ten-Tusscher, Noble, Noble, and Panfilov (the TNNP04 model); we also look at the contribution of individual ionic currents to the AP by partially or completely blocking ion channels associated with the ionic currents. We then carry out systematic studies of plane- wave and circular-wave dynamics in the TNNP04 model for cardiac tissue model. We present a detailed and systematic study of spiral-wave turbulence and spa- tiotemporal chaos in two mathematical models for human cardiac tissue due to (a) ten-Tusscher and Panfilov (the TP06 model) and (b) ten-Tusscher, Noble, Noble, and Panfilov (the TNNP04 model). In particular, we use extensive numerical simulations to elucidate the interaction of spiral waves in these models with conduction and ionic in homogeneities. Our central qualitative result is that, in all these models, the dynamics of such spiral waves depends very sensitively on such in homogeneities. A major goal here is to develop low amplitude defibrillation schemes for the elimination of VT and VF, especially in the presence of in homogeneities that occur commonly in cardiac tissue. Therefore, we study a control scheme that has been suggested for the control of spiral turbulence, via low-amplitude current pulses, in such mathematical models for cardiac tissue; our investigations here are designed to examine the efficacy of such control scheme in the presence of in homogeneities in biophysical realistic models. We find that a scheme that uses control pulses on a spatially extended mesh is more successful in the elimination of spiral turbulence than other control schemes. We discuss the theoretical and experimental implications of our study that have a direct bearing on defibrillation, the control of life-threatening cardiac arrhythmias such as ventricular fibrillation. In chapter 3, we study the role of cardiac fibroblasts in ventricular tissue; we use the TNNP04 model for the myocyte cell, and the fibroblasts are modelled as passive cells. Cardiac fibroblasts, when coupled functionally with myocytes, can modulate their electrophysiological properties at both cellular and tissue levels. Therefore, it is important to study the effects of such fibroblasts when they are coupled with myocytes. Chapter 3 contains our detailed and systematic study of spiral-wave dynamics in the presence of fibroblasts in both homogeneous and inhomogeneous domains of the TNNP04 model for cardiac tissue. We carry out extensive numerical studies of such modulation of electrophysiological properties in mathematical models for (a) single myocyte fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on earlier ones and allow for no, one-way, or two-way MF couplings. Our studies of MF units elucidate the dependence of the action-potential (AP) morphology on parameters such as Ef , the fibroblast resting membrane potential, the fibroblast conductance Gf , and the MF gap-junctional coupling Ggap. Furthermore, we find that our MF composite can show autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as Ggap, Gf , and Ef , and (c) intercellular couplings that can be no, one-way, and two-way connections of fibroblasts with myocytes. We show, in particular, that the plane-wave conduction velocity CV decreases as a function of Ggap, for no and one-way couplings; however, for two-sided coupling, CV decreases initially and then increases as a function of Ggap, and, eventually, we observe that conduction failure occurs for low values of Ggap. In our homogeneous studies, we find that the rotation speed and stability of a spiral wave can be controlled either by controlling Ggap or Ef . Our studies with fibroblast inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical models for cardiac tissue, in our MF model both with and without heterogeneities. In chapter 4, we carry out a detailed, systematic study of spiral-wave dynamics in the presence of periodic deformation (PD) in two state-of-the-art mathematical models of human ventricular tissue, namely, the TNNP04 model and the TP06 model. To the best of our knowledge, our work is the first, systematic study of the dynamics of spiral waves of electrical activation and their transitions, in the presence of PD, in such biophysically realistic mathematical models of cardiac tissue. In our studies, we use three types of initial conditions whose time evolutions lead to the following states in the absence of PD: (a) a single rotating spiral (RS), (b) a spiral-turbulence (ST) state, with a single meandering spiral, and (c) an ST state with multiple broken spirals for both these models. We then show that the imposition of PD in these three cases leads to a rich variety of spatiotemporal pat- terns in the transmembrane potential including states with (a) an RS state with n-cycle temporal evolution (here n is a positive integer), (b) rotating-spiral states with quasiperiodic (QP) temporal evolution, (c) a state with a single meandering spiral MS, which displays spatiotemporal chaos, (d) an ST state, with multiple bro- ken spirals, and (e) a quiescent state in which all spirals are absorbed (SA). For all three initial conditions, precisely which one of the states is obtained depends on the amplitudes and the frequencies of the PD in the x and y directions. We also suggest specific experiments that can test the results of our simulations. We also study, in the presence of PD, the efficacy of a low-amplitude control scheme that has been suggested, hitherto only without PD, for the control of spiral-wave turbulence, via low-amplitude current pulses applied on a square mesh, in mathematical models for cardiac tissue. We also develop line-mesh and rectangular-mesh variants of this control scheme. We find that square- and line-mesh-based, low-amplitude control schemes suppress spiral-wave turbulence in both the TP06 and TNNP04 models in the absence of PD; however, we show that the line-based scheme works with PD only if the PD is applied along one spatial direction. We then demonstrate that a minor modification of our line-based control scheme can suppress spiral-wave turbulence: in particular, we introduce a rectangular-mesh-based control scheme, in which we add a few control lines perpendicular to the parallel lines of the line- based control scheme; this rectangular-mesh scheme is a significant improvement over the square-mesh scheme because it uses fewer control lines than the one based on a square mesh. In chapter 5, we have carried out detailed numerical studies of (a) a single unit of an endocardial cell and Purkinje cell (EP) composite and (b) a two-dimensional bilayer, which contains such EP composites at each site. We have considered bio- physically realistic ionic models for human endocardial cells (Ecells) and Purkinje cells (Pcells) to model EP composites. Our study has been designed to elucidate the sensitive dependence, on parameters and initial conditions, of (a) the dynamics of EP composites and (b) the spatiotemporal evolution of spiral waves of electrical activation in EP-bilayer domains. We examine this dependence on myocyte parameters by using the three different parameter sets P1, P2, and P3; to elucidate the initial-condition dependence we vary the time at which we apply the S2 pulse in our S1-S2 protocol; we also investigate the dependence of the spatiotemporal dynamics of our system on the EP coupling Dgap, and on the number of Purkinje- ventricular junctions (PVJs), which are measured here by the ratio R, the ratio of the total number of sites to the number of PVJs in our simulation domain. Our studies on EP composites show that the frequency of autorhythmic activity of a P cell depends on the diffusive gap-junctional conductance Dgap. We perform a set of simulations to understand the source-sink relation between the E and P cells in an EP composite; such a source-sink relation is an important determinant of wave dynamics at the tissue level. Furthermore, we have studied the restitution properties of an isolated E cell and a composite EP unit to uncover this effect on wave dynamics in 2D, bilayers of EP composites. Autorhythmicity is an important property of Purkinje cell; it helps to carry electrical signals rapidly from bundle of His to the endocardium. Our investigation of an EP composite shows that the cycle length (CL) of autorhythmic activity decreases, compared to that of an uncoupled Purkinje cell. Furthermore, we find that the APD increases for an EP composite, compared to that of an uncoupled P cell. In our second set of simulations for an EP-composite unit, we have obtained the AP behaviors and the amount of flux that flows from the E to the P cell during the course of the AP. The direction of flow of this flux is an important quantity that identifies which one of these cells act as a source or a sink in this EP composite. We have found that the P cell in an EP composite acts as a stimulation-current source for the E cell in the depolarization phase of the AP, when the stimulus is applied to both cells or to the P cell only. However, the P cell behaves both as a source and a sink when the stimulus is applied to the E cell only. In our third set of simulations for an EP composite unit, we have calculated the restitution of the APD; this plays an important role in deciding the stability of spiral waves in mathematical models for cardiac tissue. Our simulation shows that, for the EP composite with high coupling (Dgap = Dmm~10), the APDR slope decreases, relative to its value for an isolated E cell, for parameter sets P1 and P2, and first increases (for 50 ≤ DI ≤ 100 ms) and then decreases for the parameter set P3 ; however, for low coupling (Dgap = Dmm~100), the variation of the AP D as function of DI, for an EP composite, shows biphasic behavior for all these three parameter sets. We found that the above dynamics in EP cable type domains, with EP composites, depends sensitively on R. We hope our in silico studies of spiral-wave dynamics in a variety of state-of-the- art ionic models for ventricular tissue will stimulate more experimental studies that examine such dynamics.

Page generated in 0.0864 seconds