• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 15
  • 6
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 85
  • 85
  • 16
  • 16
  • 15
  • 14
  • 11
  • 10
  • 10
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Quantification of the Seasonality and Vertical Dispersion Environment of PM2.5 Variation: A Comparative Analysis of Micro-Scale Wind-Based Buffer Methods

Ray, Noah R. 05 1900 (has links)
Increasing PM2.5 (particulate matter smaller than 2.5 micrometers) poses a significant health risk to people. Understanding variables critical to PM2.5 spatial and temporal variation is a first step towards protecting vulnerable populations from exposure. Previous studies investigate variables responsible for PM2.5 variation but have a limited temporal span. Moreover, although land-use classes are often taken into account, the vertical environment's influence (e.g., buildings, trees) on PM2.5 concentrations is often ignored and on-road circle buffers are used. To understand variables most critical to PM2.5 concentration variation, an air pollution sensor and GPS unit were affixed to a bicycle to sample for variables over three seasons (spring, summer, fall). Samples were taken on a route during the weekdays at four targeted hours (7AM, 11AM, 3PM, and 7PM) and joined with meteorological data. 3D morphology was assessed using LiDAR data and novel wind-based buffers. Wind speed only, wind direction only, and wind speed and direction buffers were computed and compared for their performance at capturing micro-scale urban morphological variables. Zonal statistics were used to compute morphological indicators under different wind assumptions in seasonal ordinary least squares regression models. A comprehensive wind and buffer performance analysis compares statistical significance for spatial and temporal variation of PM2.5. This study identifies the best wind parameters to use for wind-based buffer generation of urban morphology, which is expected to have implications for buffer design in future studies. Additionally, significant exposure hotspots for UNT students to PM2.5 pollution are identified.
52

Prognóstico das variáveis meteorológicas e da evapotranspiração de referência com o modelo de previsão do tempo GFS/NCEP / Prediction of meteorological variables and reference evapotranspiration with GFS/NCEP weather forecast model

Oliveira Filho, Celso Luís de 31 July 2007 (has links)
Avaliou-se o desempenho de um modelo numérico de previsão do tempo (GFS - Global Forecast System – antigo AVN – AViatioN model - do Centro Nacional para Previsão Ambiental – NCEP) no prognóstico de variáveis meteorológicas temperatura, déficit de pressão de vapor do ar, saldo de radiação e velocidade do vento, e da evapotranspiração de referência calculada pelos métodos de Thornthwaite (1948) e de Penman-Monteith (Allen et al., 1998). O desempenho foi avaliado por comparação com dados provenientes de uma estação meteorológica, situada em Piracicaba, São Paulo. A temperatura e o déficit de pressão de vapor do ar foram os elementos melhor prognosticados, com desempenho "muito bom" e "bom", de acordo com o índice de desempenho proposto por Camargo e Sentelhas (1997), para no máximo quatro e três dia de antecedência, respectivamente, durante o período seco. Para o período úmido, somente o prognóstico do déficit de pressão de vapor do ar para o primeiro dia mostrou-se "bom". Os prognósticos de saldo de radiação e velocidade do vento foram ruins para ambos os períodos. Em decorrência do bom desempenho do modelo para prognosticar a temperatura, verificou-se que a estimativa de ETo pelo método de Thornthwaite teve boa concordância com o calculado a partir dos dados da estação meteorológica, com antecedência de até três dias para o período seco. Para o úmido, este fato foi observado apenas para o primeiro dia de antecedência. A concordância entre os valores estimados pelo modelo e a partir da estação para o método de Penman-Monteith foi muito baixa, em conseqüência do desempenho do modelo de previsão do tempo em prognosticar o saldo de radiação e a velocidade do vento. / The performance of a numeric weather forecast model (GFS- Forecast System, former AVN - AvatioN model, National Center for Environmental Prediction-NCEP) was evaluated for predicting weather variables, like air temperature and vapor pressure deficit, net radiation and wind speed, as well as reference evapotranspiration calculated by Thornthwaite (1948) and Penman-Monteith (Allen et al., 1948) methods, by the comparison with data obtained by an automatic weather station, in Piracicaba, State of São Paulo, Brazil. Temperature and vapor pressure deficit were the variables predicted with the best accuracy, with a "very good" and "good" performance, according to the index of confidence proposed by Camargo and Sentelhas (1997), for the maximum of four and three days in advance, respectively, during the dry season. For the wet season, only vapor pressure deficit was predicted with a "good" performance of the model. The predictions of net radiation and wind speed were very poor for both seasons. As the weather forecast model predicted temperature well, ETo estimated by Thornthwaite method showed a good agreement with ETo values estimated by observed data from the weather station, with till three days in advance for the dry season. For the wet season, such agreement was observed just for one day in advance. When ETo estimated by Penman-Monteith method with data from the weather forecast model and from weather station were compared any agreement was observed, which was caused by the poor performance of the numeric weather forecast model to predict net radiation and wind speed.
53

Prognóstico das variáveis meteorológicas e da evapotranspiração de referência com o modelo de previsão do tempo GFS/NCEP / Prediction of meteorological variables and reference evapotranspiration with GFS/NCEP weather forecast model

Celso Luís de Oliveira Filho 31 July 2007 (has links)
Avaliou-se o desempenho de um modelo numérico de previsão do tempo (GFS - Global Forecast System – antigo AVN – AViatioN model - do Centro Nacional para Previsão Ambiental – NCEP) no prognóstico de variáveis meteorológicas temperatura, déficit de pressão de vapor do ar, saldo de radiação e velocidade do vento, e da evapotranspiração de referência calculada pelos métodos de Thornthwaite (1948) e de Penman-Monteith (Allen et al., 1998). O desempenho foi avaliado por comparação com dados provenientes de uma estação meteorológica, situada em Piracicaba, São Paulo. A temperatura e o déficit de pressão de vapor do ar foram os elementos melhor prognosticados, com desempenho "muito bom" e "bom", de acordo com o índice de desempenho proposto por Camargo e Sentelhas (1997), para no máximo quatro e três dia de antecedência, respectivamente, durante o período seco. Para o período úmido, somente o prognóstico do déficit de pressão de vapor do ar para o primeiro dia mostrou-se "bom". Os prognósticos de saldo de radiação e velocidade do vento foram ruins para ambos os períodos. Em decorrência do bom desempenho do modelo para prognosticar a temperatura, verificou-se que a estimativa de ETo pelo método de Thornthwaite teve boa concordância com o calculado a partir dos dados da estação meteorológica, com antecedência de até três dias para o período seco. Para o úmido, este fato foi observado apenas para o primeiro dia de antecedência. A concordância entre os valores estimados pelo modelo e a partir da estação para o método de Penman-Monteith foi muito baixa, em conseqüência do desempenho do modelo de previsão do tempo em prognosticar o saldo de radiação e a velocidade do vento. / The performance of a numeric weather forecast model (GFS- Forecast System, former AVN - AvatioN model, National Center for Environmental Prediction-NCEP) was evaluated for predicting weather variables, like air temperature and vapor pressure deficit, net radiation and wind speed, as well as reference evapotranspiration calculated by Thornthwaite (1948) and Penman-Monteith (Allen et al., 1948) methods, by the comparison with data obtained by an automatic weather station, in Piracicaba, State of São Paulo, Brazil. Temperature and vapor pressure deficit were the variables predicted with the best accuracy, with a "very good" and "good" performance, according to the index of confidence proposed by Camargo and Sentelhas (1997), for the maximum of four and three days in advance, respectively, during the dry season. For the wet season, only vapor pressure deficit was predicted with a "good" performance of the model. The predictions of net radiation and wind speed were very poor for both seasons. As the weather forecast model predicted temperature well, ETo estimated by Thornthwaite method showed a good agreement with ETo values estimated by observed data from the weather station, with till three days in advance for the dry season. For the wet season, such agreement was observed just for one day in advance. When ETo estimated by Penman-Monteith method with data from the weather forecast model and from weather station were compared any agreement was observed, which was caused by the poor performance of the numeric weather forecast model to predict net radiation and wind speed.
54

Integrated, Intelligent Sensor Fabrication Strategies for Environmental Monitoring

Suzuki, Takeharu, n/a January 2004 (has links)
The humidity, temperature, wind speed/direction micro sensors can be manufactured individually, resulting in three individual substrates. The integration of the three sensors into a single substrate is a vital challenge to achieve an integrated intelligent sensor so called a multiple sensor. This requires the integration of process flows and is a major challenge because adequate sensor performance must be maintained. Polyimide was selected as a humidity sensing material for its compatibility with conventional integrated circuit fabrication technology, negligible temperature dependence and good resistance against contamination. Nickel was selected for the temperature and wind speed/direction sensor because of its useful temperature coefficient and the advantage of its cost. Since the known wet etchant for nickel requires hard-baked photoresist, a method which does not attack the polyimide while removing the photoresist must be developed. The method developed for etching nickel employs hard-bake-free photoresist. Other challenge was ensuring good thermal isolation for the wind speed/direction sensor fabricated on a silicon nitride layer preformed on top of a silicon wafer. Since silicon acts as a good heat sink, the silicon under the sensor was etched entirely away until the silicon nitride layer was reached. This structure achieved good thermal isolation resulting in small power consumption. This low power feature is essential for sensors deployed in fields where power access or replacement of power sources is restricted. This structure was compared with the structure created by polyimide plateau on a silicon nitride layer coated on a silicon substrate as a function of power consumption. Based on the examination of thermal isolation, the multiple sensor utilizing a MEMS technique was fabricated with a single-sided mask aligner. The characteristics of humidity sensors fabricated with polyimide were examined in detail with respect to variations of electrode structures, improvement of sensitivity, effect of process temperature, temperature and frequency dependence, and stability. The humidity sensor constructed with O2 plasma treated polyimide resulted an improvement in sensitivity and hysteresis. The investigation using XPS, FTIR and AFM concluded the chemical modification of polyimide played an important role in this improvement. The design, fabrication and results of a series of humidity sensors are quantified. There is always no unique packaging solution for sensors because of the application-specific nature of the sensors. This intelligent environmental monitoring system was designed to accommodate both an environmental sensor and its signal conditioning electronics circuitry (SICONEC) into a single package. The environmental sensors need direct exposure to the environment while SICONEC needs a sealed encapsulation to avoid environmental damage. A new style of packaging addressing these requirements was demonstrated using a hot embossing machine. The hot embossing machine was used to embed an integrated circuit (IC) in a bare die condition into a polycarbonate (PC) sheet. In this case, the IC was flipped down against the PC, which protects the front side of the IC from the environmental damages. In a test phase, a die containing operational amplifiers was embossed into the PC. A humidity sensor and surface mount resisters were placed on the same surface of the PC to test the validity of this new technique. Interconnection between the embossed die and the humidity sensor was established using bonding wires. Copper tracks were also used to ensure all electrical connections for the die, the humidity sensor and the resistors. The results clarified the method developed. Details of process methods, issues and further potential improvement are reported.
55

Studies on Hazard Characterization for Performance-based Structural Design

Wang, Yue 2010 May 1900 (has links)
Performance-based engineering (PBE) requires advances in hazard characterization, structural modeling, and nonlinear analysis techniques to fully and efficiently develop the fragility expressions and other tools forming the basis for risk-based design procedures. This research examined and extended the state-of-the-art in hazard characterization (wind and surge) and risk-based design procedures (seismic). State-of-the-art hurricane models (including wind field, tracking and decay models) and event-based simulation techniques were used to characterize the hurricane wind hazard along the Texas coast. A total of 10,000 years of synthetic hurricane wind speed records were generated for each zip-code in Texas and were used to statistically characterize the N-year maximum hurricane wind speed distribution for each zip-code location and develop design non-exceedance probability contours for both coastal and inland areas. Actual recorded wind and surge data, the hurricane wind field model, hurricane size parameters, and a measure of storm kinetic energy were used to develop wind-surge and wind-surge-energy models, which can be used to characterize the wind-surge hazard at a level of accuracy suitable for PBE applications. These models provide a powerful tool to quickly and inexpensively estimate surge depths at coastal locations in advance of a hurricane landfall. They also were used to create surge hazard maps that provide storm surge height non-exceedance probability contours for the Texas coast. The simulation tools, wind field models, and statistical analyses, make it possible to characterize the risk-consistent hurricane events considering both hurricane intensity and size. The proposed methodology for event-based hurricane hazard characterization, when coupled with a hurricane damage model, can also be used for regional loss estimation and other spatial impact analyses. In considering seismic hazard, a risk-consistent framework for displacement-based seismic design of engineered multistory woodframe structures was developed. Specifically, a database of probability-based scale factors which can be used in a direct displacement design (DDD) procedure for woodframe buildings was created using nonlinear time-history analyses with suitably scaled ground motions records. The resulting DDD procedure results in more risk-consistent designs and therefore advances the state-of-the-art in displacement-based seismic design of woodframe structures.
56

Initial analytical investigation of overhead sign trusses with respect to remaining fatigue life and predictive methods for inspection

Alshareef, Husam Aldeen January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Hayder Rasheed / Most state highway agencies do not perform routine fatigue inspections on highway signs, luminaires, and traffic signals, thereby increasing the potential for unnoticed fatigue cracking. The Kansas Highway System utilizes over 450 sign trusses, most of which have been in service for 30-45 years. In addition, to aging support structures, the structural designs these signs and signals sometimes result in significant cyclical loading due to wind gust. This study conducted fatigue evaluations using nominal axial member-specific stress ranges corresponding to a wind speed database for a 45-year period, as well as, hundreds of structural analysis simulations. Potential fatigue failure was assessed for each member of the support structure by evaluating the ratio of consumed fatigue cycles to ultimate fatigue cycles using Miner’s rule to estimate finite life. If the ratio was close to zero after 45 years or any number of actual service years, the member was expected to have a practically infinite life. If the ratio was close to 1 after the service years, the member was expected to be at the end of its life. This information can help inspectors identify for critical spots that may have developed fatigue cracks that otherwise would be difficult to detect. Two approaches were hypothesized to account for fatigue life deterministically and probabilistically. Fatigue Life Simulator Software (FLSS) was developed to manage hundreds of simulations and determine the fatigue life of all members in a structure in specific areas of Kansas. FLSS is compatible and works simultaneously with STAAD Pro Software and Sign Truss Interface provided by KDOT, to generate results. Users apply the results to study the behavior of overhead structures and identify critical spots that should be physically inspected and potentially replaced. Results in Kanas indicated a range of structural fatigue life varying by city. Modifications were made to the output files of Sign Truss Interface to incorporate American Association of State Highway and Transportation Officials (AASHTO) load cases 1 and 2 and simulate wind speed into wind pressure using the effect of the two load cases. The modification also automatically incorporated 45-years of wind speed data into the Sign Truss Interface to simulate and generate structural models to determine corresponding stresses to the wind effect.
57

Medição da evaporação em tanques classe a instalados em ambientes aquático e terrestre / Measurement of evaporation in a tank class systems in aquatic environment and land

Pinto, Fabrício Alves January 2009 (has links)
PINTO, Fabrício Alves. Medição da evaporação em tanques classe a instalados em ambientes aquático e terrestre. 2009. 58 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências Agrárias, Departamento de Engenharia Agrícola, Programa de Pós-Graduação em Engenharia Agrícola, Fortaleza-CE, 2009. / Submitted by demia Maia (demiamlm@gmail.com) on 2016-06-28T14:11:39Z No. of bitstreams: 1 2009_dis_fapinto.pdf: 1378262 bytes, checksum: 2dae07ff31ce2b3fa2226128d976ce5d (MD5) / Approved for entry into archive by demia Maia (demiamlm@gmail.com) on 2016-06-28T14:12:14Z (GMT) No. of bitstreams: 1 2009_dis_fapinto.pdf: 1378262 bytes, checksum: 2dae07ff31ce2b3fa2226128d976ce5d (MD5) / Made available in DSpace on 2016-06-28T14:12:14Z (GMT). No. of bitstreams: 1 2009_dis_fapinto.pdf: 1378262 bytes, checksum: 2dae07ff31ce2b3fa2226128d976ce5d (MD5) Previous issue date: 2009 / The main objective of this research was to compare evaporation measured in two Class A evaporation pans. The first one installed 15 cm over the surface and the second one installed at surface level in a small reservoir. The experiment was carried out at the Fisheries Station of the Federal University of Ceará, in Fortaleza. An automated weather station was installed at the same site. During February to November of 2008, evaporation data were measured in a daily basis. The weather data were collected in a weekly basis using a radio frequency system. The evaporation measured at a soil surface was 5.3% higher than the evaporation measured at a water surface level of the reservoir. The different installation conditions were influenced differently by the weather parameters. The evaporation estimation methods of Penman, Linsley and Linacre underestimated the evaporation measured in the reservoir, and the Penman method presented the smaller error / As condições climáticas das regiões semi-áridas favorecem a evaporação que representa a maior perda do volume líquido dos açudes, portanto, um parâmetro importante para o gerenciamento dos recursos hídricos. Um dos instrumentos mais difundidos e utilizados para estimar a evaporação em reservatórios é o Tanque Classe A. Assim, este trabalho teve como objetivo principal comparar a evaporação medida em dois tanques Classe A, sendo um instalado em ambiente aquático e outro em ambiente terrestre, e como objetivo secundário avaliar estimativas da evaporação obtidas pelos métodos propostos por Penman (1948), Linsley (1982) e Linacre (1993) em relação às medidas de evaporação obtidas nos referidos tanques evaporimétricos. O experimento foi conduzido na Estação de Piscicultura do Centro de Ciências Agrárias da Universidade Federal do Ceará, em Fortaleza, CE. Neste local, além dos tanques Classe A, foi instalada uma estação meteorológica automática. No período de fevereiro a novembro de 2008 foram realizadas medidas diárias de evaporação e coletados, semanalmente, os dados meteorológicos armazenados no sistema de aquisição da estação, utilizando rádio freqüência. O total evaporado no tanque Classe A instalado em ambiente terrestre foi 5,3% superior ao total evaporado no tanque Classe A em ambiente aquático. A instalação do tanque Classe A em ambiente aquático reduziu os efeitos diretos da radiação solar incidente, umidade relativa, temperatura do ar e velocidade do vento sobre a evaporação assim com a amplitude térmica da água no seu interior. O método proposto por Penman (1948) apresentou os melhores desempenhos, com erros relativos de -3,0% em relação ao tanque Classe A no ambiente aquático e -7,9% em relação ao tanque Classe A no ambiente terrestre.
58

CARBONDIOXIDE FLUXES FROM A CONTROLLED BOREAL RIVER

ARTHUR, FRANK January 2018 (has links)
River, lakes and   streams account for more carbon dioxide emissions than all other freshwater   reservoirs together. However, there is still lack of knowledge of the   physical processes that control the efficiency of the air-water exchange of   CO2 in these aquatic systems. In the more turbulent water sections   of a river, the gas transfer is thought to be governed by the river’s   morphology such as bottom topography, slope and stream flow. Whiles for wider   sections of the river, the gas transfer could potentially be influenced by   atmospheric forcing (e.g. Wind speed). The main purpose of this project is to   study the fluxes of carbon dioxide and how (wind speed and stream discharge)   influence the CO2 fluxes in the river. In this study, direct and   continuous measurements of CO2 emission was conducted for the   first time in a controlled boreal river in Kattstrupeforsen (Sweden) from   18th April to 10th May 2018. A unique measurement setup which combines eddy   covariance techniques, general meteorology and in situ water variables (for   high accuracy emission measurements) was used. The results show that   in the late winter, an   upward directed CO2 fluxes measured in the river was approximately   2.2 μmol m−2 s−1. This value agrees with many other small and   large rivers where CO2 fluxes has been studied. The river can be   said to serve as source of CO2 to the atmosphere in the day due to   the dominant upward fluxes recorded during the daytime. The results also show   that carbon dioxide fluxes increase with increasing wind speed notably at   wind speed above 2 m s-1. There   was no relation between CO2 fluxes and stream discharge. This   indicates that wind speed could be one principal factor for air- river gas   exchange. The findings in this work on river gas exchange will provide   a basis for a regional estimate and be applicable for many river systems on a   global scale. / <p>2018-07-09</p>
59

Análise multifractal da velocidade do vento em Pernambuco

FIGUEIRÊDO, Bárbara Camboim Lopes de 24 February 2014 (has links)
Submitted by (ana.araujo@ufrpe.br) on 2016-05-25T14:39:16Z No. of bitstreams: 1 Barbara Camboim Lopes de Figueiredo.pdf: 2032958 bytes, checksum: d463c6ab534a96f1ce5aac33c2dde210 (MD5) / Made available in DSpace on 2016-05-25T14:39:16Z (GMT). No. of bitstreams: 1 Barbara Camboim Lopes de Figueiredo.pdf: 2032958 bytes, checksum: d463c6ab534a96f1ce5aac33c2dde210 (MD5) Previous issue date: 2014-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The study of climate has great importance, given that a variation of climatic elements affect the economy of a certain region and life of the inhabitants. Climate variables temperature, humidity, atmospheric pressure, solar radiation, precipitation and wind can be affected by geophysical and environmental factors such as latitude, altitude, air mass, proximity to sea, sea currents and vegetation. Wind is the most complex climate element representing the natural phenomenon of turbulence, it is characterized by high temporal and spatial variability. Wind is generated by atmospheric air mass movement, and has influence on various environmental phenomena such as soil erosion, pollutant dispersal and transport of pollen and seeds. Knowing wind speed temporal and spatial distribution is crucial to evaluate the potential for generation of eolic energy. In this work we study long-term correlations in wind speed temporal series registered at twelve meteorological stations in the state of Pernambuco, Brazil. To this end we apply Multifractal Detrended Fluctuation Analysis (MF-DFA) on hourly wind speed data for the period 2008-2011. All the analyzed series exhibit multifractal properties with generalized Hurst exponents above 0.5 indicating persistent temporal dynamics for both, small and large fluctuations. We also calculate other multifractal measures Rényi exponent and singularity spectrum, and complexity parameters, position of maximum, width and asymmetry of multifractral spectrum. No correlation was detected between complexity parameters and the geographic parameters longitude, latitude and altitude of the station, except for asymmetry of multifractal spectrum: negative correlation with longitude for maximum wind speed and negative correlation with latitude for average wind speed. However for all stations the strength of multifractality (indicated by width of multifractal spectrum) is greater for maximum wind speed then for average wind speed. These results contribute to a better understanding of the nature of stochastic processes governing wind dynamics which is necessary for development of more accurate predictive models for wind speed temporal variability and diverse phenomena influenced by wind. / O estudo do clima tem grande importância visto que a variação em elementos climáticos afeta a economia de uma região e a vida das pessoas que ali habitam. As variáveis climáticas temperatura, umidade, pressão atmosférica, radiação solar, precipitação e vento podem ser influenciadas por diversos fatores, geofísicos e ambientais, tais como latitude, altitude, massas de ar, continentalidade e maritmidade, relevo e vegetação. Um dos mais complexos elementos do clima é o vento, pelo fato de representar um fenômeno natural de turbulência, caracterizado por uma grande variabilidade temporal e espacial. O vento é gerado pelo movimento das massas de ar e pode influenciar vários fenômenos ambientais como erosão do solo, dispersão de poluentes e transporte de pólen e sementes. O conhecimento da distribuição temporal e espacial da velocidade do vento é crucial para avaliação do potencial eólico de uma região. Neste trabalho estudaram-se correlações de longo alcance das séries temporais de velocidade do vento registradas em 12 estações meteorológicas durante o período de 2008 a 2011 no estado de Pernambuco aplicando-se o método Multifractal Detrended Fluctuation Analysis (MF-DFA) nas séries temporais horárias. Todas as séries analisadas mostram as propriedades multifractais com valores de expoente generalizado de Hurst acima de 0,5 indicando uma dinâmica persistente para pequenas e grande flutuações. Foram calculadas também as outras medidas multifractais, o expoente Rényi e o espectro multifractal bem como os parâmetros de complexidade: posição do máximo, largura e assimetria do espectro multifractal. Não foram encontradas correlação entre os parâmetros de complexidade e as coordenadas geográficas: longitude, latitude e altitude, exceto a medida de assimetria do espectro multifractal: correlação negativa entre a rajada e longitude e entre velocidade e latitude. Para todas estações as larguras do espectro multifractal foram maiores para a rajada que para a velocidade, indicando uma multifractalidade mais forte. Estes resultados contribuem para uma melhor compreensão da natureza dos processos estocásticos geradores da dinâmica do vento, necessária para o desenvolvimento de modelos confiáveis para predição da variabilidade temporal do vento e dos diversos fenômenos influenciados pelo mesmo.
60

Measurement of evaporation in a tank class systems in aquatic environment and land / MediÃÃo da evaporaÃÃo em tanques classe a instalados em ambientes aquÃtico e terrestre

FabrÃcio Alves Pinto 03 January 2010 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / The main objective of this research was to compare evaporation measured in two Class A evaporation pans. The first one installed 15 cm over the surface and the second one installed at surface level in a small reservoir. The experiment was carried out at the Fisheries Station of the Federal University of CearÃ, in Fortaleza. An automated weather station was installed at the same site. During February to November of 2008, evaporation data were measured in a daily basis. The weather data were collected in a weekly basis using a radio frequency system. The evaporation measured at a soil surface was 5.3% higher than the evaporation measured at a water surface level of the reservoir. The different installation conditions were influenced differently by the weather parameters. The evaporation estimation methods of Penman, Linsley and Linacre underestimated the evaporation measured in the reservoir, and the Penman method presented the smaller error. / As condiÃÃes climÃticas das regiÃes semi-Ãridas favorecem a evaporaÃÃo que representa a maior perda do volume lÃquido dos aÃudes, portanto, um parÃmetro importante para o gerenciamento dos recursos hÃdricos. Um dos instrumentos mais difundidos e utilizados para estimar a evaporaÃÃo em reservatÃrios à o Tanque Classe A. Assim, este trabalho teve como objetivo principal comparar a evaporaÃÃo medida em dois tanques Classe A, sendo um instalado em ambiente aquÃtico e outro em ambiente terrestre, e como objetivo secundÃrio avaliar estimativas da evaporaÃÃo obtidas pelos mÃtodos propostos por Penman (1948), Linsley (1982) e Linacre (1993) em relaÃÃo Ãs medidas de evaporaÃÃo obtidas nos referidos tanques evaporimÃtricos. O experimento foi conduzido na EstaÃÃo de Piscicultura do Centro de CiÃncias AgrÃrias da Universidade Federal do CearÃ, em Fortaleza, CE. Neste local, alÃm dos tanques Classe A, foi instalada uma estaÃÃo meteorolÃgica automÃtica. No perÃodo de fevereiro a novembro de 2008 foram realizadas medidas diÃrias de evaporaÃÃo e coletados, semanalmente, os dados meteorolÃgicos armazenados no sistema de aquisiÃÃo da estaÃÃo, utilizando rÃdio freqÃÃncia. O total evaporado no tanque Classe A instalado em ambiente terrestre foi 5,3% superior ao total evaporado no tanque Classe A em ambiente aquÃtico. A instalaÃÃo do tanque Classe A em ambiente aquÃtico reduziu os efeitos diretos da radiaÃÃo solar incidente, umidade relativa, temperatura do ar e velocidade do vento sobre a evaporaÃÃo assim com a amplitude tÃrmica da Ãgua no seu interior. O mÃtodo proposto por Penman (1948) apresentou os melhores desempenhos, com erros relativos de -3,0% em relaÃÃo ao tanque Classe A no ambiente aquÃtico e -7,9% em relaÃÃo ao tanque Classe A no ambiente terrestre.

Page generated in 0.1186 seconds