• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 61
  • 34
  • 22
  • 13
  • 10
  • 10
  • 9
  • 7
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 524
  • 524
  • 174
  • 151
  • 84
  • 64
  • 64
  • 54
  • 49
  • 48
  • 46
  • 44
  • 41
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Wind turbines application for energy savings in Gas transportation system

Mingaleeva, Renata January 2014 (has links)
The Thesis shows the perspectives of involving renewable energy resources into the energy balance of Russia, namely the use of wind energy for the purpose of energy supply for the objects of the Russian Gas transportation system. The methodology of the wind energy technical potential calculation is designed and the wind energy technical potential assessment for onshore and offshore zones of Russia is presented. The analysis of Russian Gas transportation system in terms of energy consumption is carried out when comparing the map of wind resources in Russia with the map of Russian Gas transportation system and the perspective of wind turbines installation is shown in order to offset energy consumption of the selected object of the Gas transportation system. The decision-making algorithm for wind turbines selection is developed for installation on the wind farm. Also indicators of investment attractiveness of the project of using wind turbines for compression stations energy supply were calculated.
432

Asymmetric Blade Spar for Passive Aerodynamic Load Control

Mcclelland, Charles 01 January 2013 (has links) (PDF)
Asymmetric bending is explored as a means of inducing bend-twist coupling in an isotropic, fixed-wing airfoil. An analytical model describing the bend-twist coupling behavior of a constant-section airfoil undergoing steady wind loading is derived from Euler-Bernoulli beam theory, and evaluated over a range of structural and material stiffness. Finite element analysis is carried out in the ANSYS Parametric Design Language environment for an asymmetric, two-dimensional beam. Three-dimensional finite element analysis is carried out for two candidate blade models created in Pro/Engineer based on the NACA 64618 airfoil. Deformation results for the two- and three-dimensional finite element models are compared with analytical solutions. Results of this investigation highlight the dependency between the cross-sectional properties of a spar support and its tendency to exhibit twist-coupling under transverse loading.
433

Multi Rotor Wind Turbine Design And Cost Scaling

Verma, Preeti 01 January 2013 (has links) (PDF)
The current generation wind turbines are upscaled into multi megawatt range in terms of output power. However, the energy benefit from the turbine is offset by the increased mass and cost. Twenty MW wind turbines are now feasible with rotor diameters up to 200 m, according to a new report from the EU-funded UpWind project in 2011. The question is, how much bigger can wind turbines get realistically? One concept worth considering, and the one that is the subject of this thesis, is to have more than one rotor on a single support structure. Such turbines could have a greater power to weight ratio. Multi-rotor systems also offer the advantage of standardization, transportation and ease of installation and maintenance. In this thesis the NREL 5 MW single rotor baseline wind turbine is compared with a 5 MW multi-rotor wind turbine. The multiple rotors are downscaled using scaling curves keeping the 5 MW baseline machine as reference.
434

[pt] AVALIAÇÃO DO COMPORTAMENTO DE UMA TURBINA EÓLICA DE EIXO HORIZONTAL SUBMETIDA A CARREGAMENTO DE VENTO / [en] EVALUATION OF THE BEHAVIOR OF A HORIZONTAL AXIS WIND TURBINE SUBJECTED TO WIND LOADING

VANESSA LANZIERE NEVES 29 June 2021 (has links)
[pt] Nos últimos anos tem-se observado o crescente fomento de pesquisas globais por sistemas de energias renováveis que proporcionem menor impacto ambiental, garantindo às necessidades do presente sem comprometer a capacidade das gerações futuras. Tal propósito tem impulsionado o avanço da pesquisa em diferentes áreas do campo da energia eólica global, objetivando-se entender o comportamento estrutural e mecânico de cada componente, a fim de garantir uma engenharia de maior segurança e qualidade, bem como reduzir o tempo de indisponibilidade dos aerogeradores. O presente estudo tem como objetivo avaliar o comportamento estrutural de um aerogerador onshore de eixo horizontal, com rotor de três pás, submetido a campos normais e extremos de velocidade do vento definidos de acordo com a IEC 61400- 1 - Wind Turbines Design Requirements. Devido ao acesso limitado às informações técnicas dos aerogeradores comercializados pelos fabricantes, será realizada a análise para o aerogerador de referência de 5 MW desenvolvido pelo Laboratório Nacional de Energias Renováveis (NREL) dos Estados Unidos, o qual disponibilizou as especificações técnicas do aerogerador para acesso público. O comportamento da estrutura será avaliado através da simulação do sistema acoplado rotor-torre-fundação no código FAST, que é um simulador aero-hidro-servo-elástico desenvolvido pelo NREL, o qual está abertamente disponível e bem documentado no meio científico. Os casos de vento normal e extremo, estabelecidos pela IEC 61400-1 e utilizados no FAST, são processados pelo programa TurbSim, também disponibilizado pelo NREL. A análise modal do aerogerador é realizada pelo software SAP2000 para obtenção das frequências naturais e avaliação da característica dos modos de vibração da estrutura. O modelo de elementos finitos considera a torre e as pás discretizadas em elementos de viga. / [en] In recent years there has been a global research for forms of renewable energy which could provide less environmental impact as well as guarantee energy for future generations. This scenario leads to the rise of studies in wind power field which scrutinizes the wind turbine aiming to understand the structural and mechanical behaviour of each component in order to assure safer and quality engineering as well as reducing the wind turbines downtime. The present study aims to understand the structural behavior of an onshore three-bladed horizontal-axis wind turbine subjected to the normal and extreme wind speed fields defined in accordance with IEC 61400- 1 - Wind Turbines Design Requirements. Due to limited access to technical information on wind turbines marketed by manufacturers, the analysis will be performed for the 5 MW Reference Wind Turbine developed by the National Renewable Energy Laboratory (NREL) of the United States, which made the technical specifications of the turbine available for public access. The behavior of the structure will be evaluated through the simulation of the rotor-tower-foundation coupled system in the FAST code, which is an aero-hydro-servo-elastic simulator developed by NREL, which is openly available and well documented in the scientific community. The cases of normal and extreme wind, established by IEC 61400-1, used in FAST, are processed by the TurbSim program also provided by NREL. The modal analysis of the wind turbine is performed using the software SAP2000 in order to obtain the natural frequencies and evaluate the characteristic of the structure s vibration modes. The finite element model considers the tower and the blades discretized into beam elements.
435

Automatic wind turbine operation analysis through neural networks / Automatisk driftanalys av vindturbiner medels neurala nätverk

Boley, Alexander January 2017 (has links)
This master thesis handles the development of an automatic benchmarking program for wind turbines and the thesis works as the theoretical basis for this program. The program is created at the request of the power company OX2 who wanted this potential to be investigated. The mission given by the company is to: 1. to find a good key point indicator for the efficiency of a wind turbine, 2. to find an efficient way to assess this and 3. to write a program that does this automatically and continuously. The thesis determines with a study of previous research that the best method to utilize for these kinds of continuous analyses are artificial neural networks which can train themselves on historical data and then assess if the wind turbine is working better or worse than it should with regards to its history. This comparison between the neural network predicted operation and the actual operation works as the measurement of the efficiency, the key point indicator for how the turbine work compared to how it historically should operate. The program is based on this principle and is completely written in MATLAB. Further testing of the program found that the best variables to use are wind speed and the blade pitch angle as input variables for the neural network and active power as the target used as the variable to predict and assess the operation. The final program was able to be fully automated and integrated into the OX2 system thanks to the possibility to continuously import wind turbine data through APIs. In the final testing was the program able to identify 75% of the anomalies manually found in the half year and in the five turbines used for this thesis, the small anomalies not found manually but identified by the program excluded. / Den här masteruppsatsen hanterar utvecklandet av ett automatiskt driftanalyseringsprogram för vindkraftverk och fungerar som det teoretiska underlaget för detta program. Programmet utvecklades på uppdrag av kraftbolaget OX2 som ville undersöka potentialen för ett sådant analysprogram i deras verksamhet. Uppdraget givet var att: 1. ta fram en bra indikator när det gäller den faktiska effektiviteten av ett vindkraftverk, 2. att hitta ett effektivt sätt att använda detta måttet i en analys där målet är att hitta avvikelser, och 3. skriva ett program som automatiskt kan använda måttet och metoden över tiden. Rapporten kommer via litteraturstudie fram till att tidigare forskning visar på att neurala nätverk är den mest lovande metoden för att genomföra sådan här analys. Dessa nätverk kan träna sig själva på historiska data och sedan analysera om vindturbinen arbetar bättre eller sämre än historiskt. Den här jämförelsen mellan den historiskt grundade förutspådda kraften ut och den faktiska kraften ut fungerar som kvalitetsmåttet på hur bra turbinen fungerar. Programmet är baserat på den här principen och är helt skriven i MATLAB. Vidare tester av programmet visar att de bästa variablerna att använda för att förutspå kraften ut är vindhastigheten och bladens vinkel mot vinden. Slutprogrammet var kapabelt att fullt automatiskt och integrerat i OX2s system identifiera 75% av alla avvikelser som manuellt hittats i ett halvårs data på de fem turbinerna använda för rapporten, småfel hittade av programmet men inte manuellt exkluderat.
436

Wind turbine simulations using spectral elements

Kleusberg, Elektra January 2017 (has links)
Understanding the flow around wind turbines is a highly relevant research question due to the increased interest in harvesting energy from renewable sources. This thesis approaches the topic by means of numerical simulations using the actuator line method and the incompressible Navier–Stokes equations in the spectral element code Nek5000. The aim is to gain enhanced understanding of the wind turbine wake structure and wind turbine wake interaction. A verification study of the method and implementation is performed against the finite volume solver EllipSys3D using two types of turbines, an idealized constant circulation turbine and the Tjæreborg turbine. It is shown that Nek5000 requires significantly lower resolution to accurately compute the wake development, however, at the cost of a smaller time step.The constant circulation turbine is investigated further with the goal of establishing guidelines for the use of the actuator line method in spectral element codes, where the mesh is inherently non-equidistant and currently used guidelines of force distribution based on Gaussian kernels are difficult to apply. It is shown that Nek5000 requires a larger kernel width in the fixed frame of reference to remove numerical instabilities. Further, the impact of different Gaussian widths on the wake development is investigated in the rotating frame of reference, showing that the convection velocity and the breakdown of the spiral tip and root vortices are dependent on the Gaussian width. In the second part, the flow around single and multiple wind-turbine setups at different operating conditions is investigated and compared with experimental results. The focus is placed on comparing the power and thrust coefficients and the wake development based on the time-averaged streamwise velocity and turbulent stresses. Further the influence of the tower model is investigated both upstream and downstream of the turbine. The results show that the wake is captured accurately in most cases. The loading exhibits a significant dependence on the Reynolds number at which the airfoil data is extracted. When the helical tip vortices are stable the turbulent stresses at the tip vortices are underestimated in the numerical simulations. This is due to the finite resolution and the projection of the actuator line forces in the numerical domain using a prescribed Gaussian width, which leads to lower induced velocities in the helical vortices. / <p>QC 20170523</p>
437

Realization Of Power Factor Correction And Maximum Power Point Tracking For Low Power Wind Turbines

Gamboa, Gustavo 01 January 2009 (has links)
In recent years, wind energy technology has become one of the top areas of interest for energy harvesting in the power electronics world. This interest has especially peaked recently due to the increasing demand for a reliable source of renewable energy. In a recent study, the American Wind Energy Association (AWEA) ranked the U.S as the leading competitor in wind energy harvesting followed by Germany and Spain. Although the United States is the leading competitor in this area, no one has been able successfully develop an efficient, low-cost AC/DC convertor for low power turbines to be used by the average American consumer. There has been very little research in low power AC/DC converters for low to medium power wind energy turbines for battery charging applications. Due to the low power coefficient of wind turbines, power converters are required to transfer the maximum available power at the highest efficiency. Power factor correction (PFC) and maximum power point tracking (MPPT) algorithms have been proposed for high power wind turbines. These turbines are out of the price range of what a common household can afford. They also occupy a large amount of space, which is not practical for use in one's home. A low cost AC/DC converter with efficient power transfer is needed in order to promote the use of cheaper low power wind turbines. Only MPPT is implemented in most of these low power wind turbine power converters. The concept of power factor correction with MPPT has not been completely adapted just yet. The research conducted involved analyzing the effect of power factor correction and maximum power point tracking algorithm in AC/DC converters for wind turbine applications. Although maximum power to the load is always desired, most converters only take electrical efficiency into consideration. However, not only the electrical efficiency must be considered, but the mechanical energy as well. If the converter is designed to look like a purely resistive load and not a switched load, a wind turbine is able to supply the maximum power with lower conduction loss at the input side due to high current spikes. Two power converters, VIENNA with buck converter and a Buck-boost converter, were designed and experimentally analyzed. A unique approach of controlling the MPPT algorithm through a conductance G for PFC is proposed and applied in the VIENNA topology. On the other hand, the Buck-boost only operates MPPT. With the same wind profile applied for both converters, an increase in power drawn from the input increased when PFC was used even when the power level was low. Both topologies present their own unique advantages. The main advantage for the VIENNA converter is that PFC allowed more power extraction from the turbine, increasing both electrical and mechanical efficiency. The buck-boost converter, on the other hand, presents a very low component count which decreases the overall cost and volume. Therefore, a small, cost-effective converter that maximizes the power transfer from a small power wind turbine to a DC load, can motivate consumers to utilize the power available from the wind.
438

End-of-life wind blade recycling through thermal process

Benz, Kerstin January 2023 (has links)
Renewable energy production with wind turbines has been rising in the last 30 years and it is a crucial technology, which is necessary for the energy transition. As sustainable as the energy production of wind turbines is, the waste management of the blade material is not. Most of the blades end up on a landfill or get incinerated. There are different types of recycling methods, but the most commonly used is to shred the fibers into little pieces and reusing them for filler material in the concrete industry. This approach does not actually split up the blade material into its components but it is more of a downcycling. In this thesis, a new type of pyrolysis will be looked into, which splits up the blade material into its components namely glass fibers and plastic using molten salt. This process would make the glass fiber industry more sustainable by introducing a recycled glass fiber with minimal loss in quality. In a first step, the blade material will be examined more closely with a thermogravimetric analysis to find out what kind of plastic it is and what temperature would be necessary to pyrolyze it. This information will be used to conduct an experiment in a molten salt solution and determine the necessary reaction time and temperature. This data will be used to compare the costs of this method with shredding the material and the conventional pyrolysis. From the thermogravimetric analysis, it was possible to determine that the type of plastic used in this turbine was made out of epoxy. The maximum degredation of this material occurred at 380 ◦C. Not many experiments could be conducted in order to find the optimal conditions for the pyrolysis process due to difficulties with the furnace. Nevertheless, one sample was successfully pyrolyzed at a temperature of 400 ◦C with a residence time of 15 minutes. With the current market conditions in the recycled glass fibers industry, this product would be too expensive and the demand would be too little. However, the market is expected to grow in the next couple years due to rising interests in circular economy and governments introducing regulations. Nevertheless, it is necessary to increase the efficiency of the molten salt pyrolysis in order to be applicable to a bigger scale. More experiments should be conducted with cheaper molten salt in order to sink the costs of the process.
439

Numerical computations of wind turbine wakes and wake interaction : Optimization and control

Nilsson, Karl January 2012 (has links)
In the present thesis the wake flow behind wind turbines is analyzed numerically using large-eddy simulations. The wind turbine rotors are modeled by using either the actuator disc method or the actuator line method in which the blades are represented by body forces computed with airfoil data. Using these models, the boundary layers of the turbine blades are not resolved and most of the computational power is preserved to simulate the wake flow. The actuator disc method is used for the wake interaction studies of the Lillgrund wind farm. In this study the power production is simulated for two different wind directions and compared to measurements. A grid sensitivity study and a turbulence intensity study are also performed. As a last step the front row turbines are derated in an attempt to increase the total production of the farm. The results show that it is important to impose atmospheric conditions at the inlet in the simulations, otherwise production will be unrealistically low for some turbines in the farm. The agreement between the simulated and measured power is very good. The study based on derating the front row turbines does not show any positive increase on the farm production. The actuator line method is used for near wake analysis of the MEXICO rotor. In this study the near wake is simulated for five different flow cases and compared with particle image velocimetry (PIV) measurements. The analysis is performed by comparing size and circulation of the tip vortices, the radial and streamwise velocity distributions, the spatial expansion of the wake and the axial induction factor. The simulations and measurements generally are in agreement. In some cases, however, the measurements are affected by tunnel effects which are not captured in the simulations. In connection to the actuator disc method a power control strategy for operating conditions below rated power is implemented and tested. The strategy is first validated using an in-house developed blade element momentum code and then is implemented in the actuator disc method used in the EllipSys3D code. The initial tests show that the strategy responds as expected when changing the moment of inertia of the rotor and when varying the inlet conditions. Results from the implementation of the strategy in the actuator disc method in EllipSys3D show that the turbine adapts to the conditions it is operating in by changing its rotational velocity and power output when the inlet conditions are varied. / <p>QC 20130111</p>
440

Wind Turbine Airfoil Optimization by Particle Swarm Method

Endo, Makoto January 2011 (has links)
No description available.

Page generated in 0.0974 seconds