• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A comparative study of ZnO i-layer deposited with ALD and PVD for CIGS solar cells

Johansson Byberg, Joel January 2019 (has links)
Two identified setbacks for CIGS based devices in order to obtain higher efficiency are parasitic absorption in the window layer structure and losses in open-circuit voltage due to bad interfaces. This study investigated how the performance of the solar cell is affected by depositing intrinsic ZnO (i-ZnO) and ZnMgO with atomic layer deposition (ALD) instead of the conventional sputtering. No significant improvement in fill factor was obtained by the use of ALD compared to sputtering, leading to the conclusion that pinholes in the sputtered film are not a detrimental factor for the cell. As the thickness of the i-layer increased, an increase in FF was observed for the ALD-deposited i-layer, whereas a decrease was observed for the sputtered i-layer. The open-circuit voltage was considered constant between the two series with only small fluctuations, indicating that the defect chemistry of the i-ZnO/CdS interface was not improved with the use of ALD. In this study it is shown that a gain in short-circuit current can be obtained for CIGS solar cells in the high energy region of the spectrum by reducing the thickness of the i-ZnO, as well as alloying the ZnO with Mg. When compared with a baseline layer sample with a sputtered i-layer thickness of around 90 nm, the estimated gain in short-circuit current density without a loss in fill factor was 0.14 and 0.20 mA/cm2 for ALD and sputtering, respectively. For the series with a ZnMgO i-layer, the highest estimated gain was 0.17 mA/cm2. This was observed for the sample with a 4:1 (Zn:Mg) pulse ratio, whereas higher Mg contents yielded a too high band gap that resulted in an electron blocking barrier.
2

Atomic layer deposition of zinc tin oxide buffer layers for Cu(In,Ga)Se2 solar cells

Lindahl, Johan January 2015 (has links)
The aim of this thesis is to provide an in-depth investigation of zinc tin oxide, Zn1-xSnxOy or ZTO, grown by atomic layer deposition (ALD) as a buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells. The thesis analyzes how changes in the ALD process influence the material properties of ZTO, and how these in turn affect the performance of CIGS solar cells. It is shown that ZTO grows uniformly and conformably on CIGS and that the interface between ZTO and CIGS is sharp with little or no interdiffusion between the layers. The band gap and conduction band energy level of ZTO are dependent both on the [Sn]/([Zn]+[Sn]) composition and on the deposition temperature. The influence by changes in composition is non-trivial, and the highest band gap and conduction band energy level are obtained at a [Sn]/([Zn]+[Sn]) composition of 0.2 at 120  °C. An increase in optical band gap is observed at decreasing deposition temperatures and is associated with quantum confinement effects caused by a decrease in crystallite size. The ability to change the conduction band energy level of ZTO enables the formation of suitable conduction band offsets between ZTO and CIGS with varying Ga-content. It is found that 15 nm thin ZTO buffer layers are sufficient to fabricate CIGS solar cells with conversion efficiencies up to 18.2 %. The JSC is in general 2 mA/cm2 higher, and the VOC 30 mV lower, for cells with the ZTO buffer layer as compared to cells with the traditional CdS buffer layer. In the end comparable efficiencies are obtained for the two different buffer layers. The gain in JSC for the ZTO buffer layer is associated with lower parasitic absorption in the UV-blue region of the solar spectrum and it is shown that the JSC can be increased further by making changes to the other layers in the traditional CdS/i-ZnO/ZnO:Al window layer structure. The ZTO is highly resistive, and it is found that the shunt preventing i-ZnO layer can be omitted, which further increases the JSC. Moreover, an additional increase in JSC is obtained by replacing the sputtered ZnO:Al front contact with In2O3 deposited by ALD. The large gain in JSC for the ZTO/In2O3 window layer stack compensates for the lower VOC related to the ZTO buffer layer, and it is demonstrated that the ZTO/In2O3 window layer structure yields 0.6 % (absolute) higher conversion efficiency than the CdS/i-ZnO/ZnO:Al window layer structure.
3

Growth and Characterization of ZnO for the Front Contact of Cu(In,Ga)Se2

Bhatt, Rita 01 January 2000 (has links)
ZnO window layers for CIGS solar cells are grown with a DC sputtering technique instead of a conventional RF sputtering technique. Transparent window layers and buffer layers are sputtered from the Zn target in the presence of Oxygen. The window layer is doped with Aluminum in order to achieve high electrical conductivity and thermal stability. The effect of different sputtering parameters on the electrical and optical properties of the films is elaborately studied. Sets of annealing experiments are also performed. Combinations of different deposition parameters are examined to design the optimum fabrication conditions. We are able to deposit 85% transparent, Al doped ZnO films having 002-axis orientation and 4e-4 ohm-cm resistivity, which is successfully, used on CIGS solar cells. Resistivity of undoped ZnO buffer layers is varied form 10-2 ohm-cm to unmeasurable by varying the sputtering parameters. The performance of a reactively sputtered window layer and a buffer layer have matched the performance of the RF sputtered ZnO on CIGS solar cells. There has been considerable effort to eliminate Chemical Bath Deposition of the CdS buffer layer from CIS solar cell fabrication. The performance of an undoped DC sputtered ZnO layer is examined on Cd free CIGS solar cells. The ZnO buffer layer is directly sputtered on an underlying CIGS material. The performance of Cd free solar cells is highly susceptible to the presence of Oxygen in the sputtering ambient of the buffer layer deposition [6]. As Oxygen is a growth component in reactive sputtering, the growth mechanisms of the DC-sputtered buffer layer are studied to improve the understanding. The performance of all reactively sputtered ZnO devices matched the values reported in the literature and the results for DC sputtered ZnO on Cd-free solar cells were encouraging.
4

Cadmium Free Buffer Layers and the Influence of their Material Properties on the Performance of Cu(In,Ga)Se2 Solar Cells

Hultqvist, Adam January 2010 (has links)
CdS is conventionally used as a buffer layer in Cu(In,Ga)Se2, CIGS, solar cells. The aim of this thesis is to substitute CdS with cadmium-free, more transparent and environmentally benign alternative buffer layers and to analyze how the material properties of alternative layers affect the solar cell performance. The alternative buffer layers have been deposited using Atomic Layer Deposition, ALD. A theoretical explanation for the success of CdS is that its conduction band, Ec, forms a small positive offset with that of CIGS. In one of the studies in this thesis the theory is tested experimentally by changing both the Ec position of the CIGS and of Zn(O,S) buffer layers through changing their gallium and sulfur contents respectively. Surprisingly, the top performing solar cells for all gallium contents have Zn(O,S) buffer layers with the same sulfur content and properties in spite of predicted unfavorable Ec offsets. An explanation is proposed based on observed non-homogenous composition in the buffer layer. This thesis also shows that the solar cell performance is strongly related to the resistivity of alternative buffer layers made of (Zn,Mg)O. A tentative explanation is that a high resistivity reduces the influence of shunt paths at the buffer layer/absorber interface. For devices in operation however, it seems beneficial to induce persistent photoconductivity, by light soaking, which can reduce the effective Ec barrier at the interface and thereby improve the fill factor of the solar cells. Zn-Sn-O is introduced as a new buffer layer in this thesis. The initial studies show that solar cells with Zn-Sn-O buffer layers have comparable performance to the CdS reference devices. While an intrinsic ZnO layer is required for a high reproducibility and performance of solar cells with CdS buffer layers it is shown in this thesis that it can be thinned if Zn(O,S) or omitted if (Zn,Mg)O buffer layers are used instead. As a result, a top conversion efficiency of 18.1 % was achieved with an (Zn,Mg)O buffer layer, a record for a cadmium and sulfur free CIGS solar cell. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 717

Page generated in 0.0382 seconds