Spelling suggestions: "subject:"lizard off oz"" "subject:"lizard oof oz""
31 |
Don’t be unfair, Mr Bot! : An empirical study exploring the perception of fairness in non-work settings for human-agent interactionsBäckström, August, Ekenberg, William January 2023 (has links)
This study aimed to explore the implementation of fairness in intelligent agents to enhance their interactions in our social space. Two distinct investigations, an experiment, and a focus group, were conducted to examine the impact of unfair treatment by non-anthropomorphic and anthropomorphic agents, where we sought to answer the research question: How does experiencing unfair treatment from agents with different appearances influence individuals' perceptions, satisfaction, and trust? The experiment encompassed four experimental conditions combining fair and unfair behaviours with agents displaying human-like or non-human-like appearances. User enactment, Experience prototyping, and the Wizard of Oz technique were employed during the experiment. The focus group aimed to delve into the concept of fairness and its relevance to agents in greater detail. In summary, the study's findings indicate that fairness is a significantly important consideration in agent design. However, the complexity of designing a fair agent proves challenging, due to the subjective and contextual nature where it entangles with various factors. / Toward socially competent AI: Designing multi-user interaction with embodied intelligent agents to support politeness and fairness (SCAI)
|
32 |
Neural approaches to dialog modelingSankar, Chinnadhurai 08 1900 (has links)
Cette thèse par article se compose de quatre articles qui contribuent au domaine de l’apprentissage profond, en particulier dans la compréhension et l’apprentissage des ap- proches neuronales des systèmes de dialogue. Le premier article fait un pas vers la compréhension si les architectures de dialogue neuronal couramment utilisées capturent efficacement les informations présentes dans l’historique des conversations. Grâce à une série d’expériences de perturbation sur des ensembles de données de dialogue populaires, nous constatons que les architectures de dialogue neuronal couramment utilisées comme les modèles seq2seq récurrents et basés sur des transformateurs sont rarement sensibles à la plupart des perturbations du contexte d’entrée telles que les énoncés manquants ou réorganisés, les mots mélangés, etc.
Le deuxième article propose d’améliorer la qualité de génération de réponse dans les systèmes de dialogue de domaine ouvert en modélisant conjointement les énoncés avec les attributs de dialogue de chaque énoncé. Les attributs de dialogue d’un énoncé se réfèrent à des caractéristiques ou des aspects discrets associés à un énoncé comme les actes de dialogue, le sentiment, l’émotion, l’identité du locuteur, la personnalité du locuteur, etc.
Le troisième article présente un moyen simple et économique de collecter des ensembles de données à grande échelle pour modéliser des systèmes de dialogue orientés tâche. Cette approche évite l’exigence d’un schéma d’annotation d’arguments complexes. La version initiale de l’ensemble de données comprend 13 215 dialogues basés sur des tâches comprenant six domaines et environ 8 000 entités nommées uniques, presque 8 fois plus que l’ensemble de données MultiWOZ populaire. / This thesis by article consists of four articles which contribute to the field of deep learning, specifically in understanding and learning neural approaches to dialog systems. The first article takes a step towards understanding if commonly used neural dialog architectures effectively capture the information present in the conversation history. Through a series of perturbation experiments on popular dialog datasets, wefindthatcommonly used neural dialog architectures like recurrent and transformer-based seq2seq models are rarely sensitive to most input context perturbations such as missing or reordering utterances, shuffling words, etc.
The second article introduces a simple and cost-effective way to collect large scale datasets for modeling task-oriented dialog systems. This approach avoids the requirement of a com-plex argument annotation schema. The initial release of the dataset includes 13,215 task-based dialogs comprising six domains and around 8k unique named entities, almost 8 times more than the popular MultiWOZ dataset.
The third article proposes to improve response generation quality in open domain dialog systems by jointly modeling the utterances with the dialog attributes of each utterance. Dialog attributes of an utterance refer to discrete features or aspects associated with an utterance like dialog-acts, sentiment, emotion, speaker identity, speaker personality, etc.
The final article introduces an embedding-free method to compute word representations on-the-fly. This approach significantly reduces the memory footprint which facilitates de-ployment in on-device (memory constraints) devices. Apart from being independent of the vocabulary size, we find this approach to be inherently resilient to common misspellings.
|
Page generated in 0.0732 seconds