• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 34
  • 34
  • 10
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Elastase responsive hydrogel dressing for chronic wounds

Bibi, Nurguse January 2011 (has links)
Chronic wounds are a major financial and clinical burden causing the deaths of millions per year. Over expression of elastase is well documented as the main culprit that delays the normal wound repair process within chronic wounds. The aim of this thesis is to design a responsive chronic wound dressing based on the hydrogel polymer, PEGA (polyethylene glycol acrylamide) in the form of particles to mop-up excess elastase by exploiting polymer collapse in response to elastase hydrolytic activity within sample fluids mimicking the environment of chronic wounds. PEGA particles were functionalised with enzyme cleavable peptides (ECPs) containing charged residues. Upon cleavage the charge balance changes, causing polymer swelling and consequent elastase entrapment. The pH range of chronic wounds is reported in the range of 5.45 - 8.65. Due to its pI which is around 8.3, within this range elastase exist both in its cationic and anionic forms. To accommodate a hydrogel dressing that could selectively entrap excess elastase both in its cationic and anionic, oppositely charged ECPs were designed. In its cationic form, elastase was found to have a high preference of cleaving ECPs and penetrating into PEGA particles bearing negative charges. In contrast, in its anionic form the opposite effect was observed, wherein elastase preferred to cleave ECPs and penetrate PEGA particles bearing positive charges. The diffusion, accessibility and entrapment of elastase into functionalised PEGA particles was explored using various fluorescence microscopy techniques. Removal of the charged residue by elastase showed a reduction in particle swelling causing the pores of PEGA particles to become restricted. In this manner, cleaved PEGA particles prevented the accessibility of molecules with a molecular weight as low as 20 kDa into the cleaved PEGA particles. Since elastase has a molecular weight of 25.9 kDa the collapsing of the pores within PEGA particles entrapped elastase inside the interior of cleaved PEGA particles. In its cationic form (at pH 7.4) elastase was found to penetrate and become trapped more into both negative and positive PEGA particles compared to neutral particles. The negative particles were shown to trapped cationic elastase within 2 minutes compared to the positive particles. In contrast, the neutral particles failed to retain and encapsulate elastase as the fluorescence inside the neutral particles was found to decrease. Coinciding with these observations, after sample fluids containing elastase were treated with functionalised PEGA particles, the residual elastase activity in sample fluids was reduced more by the charged PEGA particles compared to neutral particles. The cell culture studies demonstrated that the elastase activity observed in human dermal fibroblasts (HDF) was also reduced more by the charged particles compared to the neutral particles. However, the positive particles were found to significantly reduced HDF-elastase activity compared to both the negative and neutral PEGA particles. Overall, this thesis exemplifies that on the basis of charge selective cleaving of ECPs coupled to PEGA particles can be exploited to selectively remove excess proteases such as elastase from sample fluids mimicking the environment of chronic wounds.
12

Development of an antimicrobial wound dressing by co-electrospinning bacteriocins of lactic acid bacteria into polymeric nanofibers

Heunis, Tiaan de Jager 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Skin is the largest organ in the human body and serves as a barrier that protects the underlying tissue of the host from infection. Injury, however, destroys this protective barrier and provides a perfect opportunity for microorganisms to invade the host and cause infection, thereby affecting the normal wound healing processes. Furthermore, the ability of microbial pathogens to rapidly develop resistance towards a variety of antimicrobial compounds hampers the effective treatment and control of infections. Antimicrobial-resistant pathogens are increasingly being isolated from patients, placing a huge burden on the health care sector. The search for new and novel antimicrobial agents and treatments is thus of utmost importance and will continue to play an integral role in medical research. Antimicrobial peptides (AMPs) may serve as possible alternatives to antibiotics, or may be used in combination with antibiotics to reduce the risk of antimicrobial resistance. AMPs play a role in innate defence and are produced by a variety of mammals, plants, reptiles, amphibians, birds, fish and insects. The AMPs of bacteria (bacteriocins), especially those of lactic acid bacteria (LAB), are receiving increased attention as antimicrobial agents to treat bacterial infections. Electrospun nanofibers have characteristics that make them suitable as wound dressings, i.e. high oxygen permeability, variable pore size, high surface area to volume ratio and nanofibers are morphologically similar to the extracellular matrix. The ability to incorporate of a variety of biologically active compounds into nanofibers increases their potential as wound dressings. A novel approach would be to incorporate bacteriocins from LAB into nanofiber scaffolds to generate antimicrobial wound dressings. In this study, the feasibility of co-electrospinning bacteriocins from LAB into nanofibers was investigated. Plantaricin 423, produced by Lactobacillus plantarum 423, was successfully co-electrospun into poly(ethylene oxide) (PEO) nanofibers. Plantaricin 423 retained activity after the electrospinning process and continued to inhibit the growth of Lactobacillus sakei DSM 20017T and Enterococcus faecium HKLHS. Viable cells of L. plantarum 423 were also successfully co-electrospun into PEO nanofibers, albeit with a slight reduction in viability. A nanofiber drug delivery system was developed for plantaricin 423 and bacteriocin ST4SA, produced by Enterococcus mundtii ST4SA, by blending PEO and poly(D,L-lactide) (PDLLA) in a suitable solvent before electrospinning. Nanofibers were produced that released the bacteriocins over an extended time period. The PEO:PDLLA (50:50) nanofiber scaffold retained its structure the best upon incubation at 37 °C and released active plantaricin 423 and bacteriocin ST4SA. Nisin A was also successfully co-electrospun into a PEO:PDLLA (50:50) nanofiber scaffold and nisin A, released from the nanofibers, inhibited the growth of Staphylococcus aureus in vitro. Nisin A-containing nanofiber scaffolds significantly reduced viable S. aureus cells in infected skin wounds and promoted wound healing in non-infected wounds. As far as we could determine we are the first to show that bacteriocin-eluting nanofiber scaffolds can be used to treat skin infections and influence wound healing. / AFRIKAANSE OPSOMMING: Vel is die grootse orgaan in die menslike liggaam en dien as buitelaag wat die gasheer se onderliggende weefsel teen infeksie beskerm. Beskadigde vel verloor egter hierdie beskermende eienskap en gee mikroörganismes die geleentheid om die liggaam binne te dring, infeksie te veroorsaak en die normale prosesse geassosieer met wondgenesing te beïnvloed. Die suksesvolle behandeling en beheer van infeksies word gedemp deur die vermoë van mikroörganismes om vinnig weerstand teen antimikrobiese middels te ontwikkel. Mikroörganismes met antimikrobiese weerstand word geredelik van pasiënte geïsoleer en dit plaas enorme druk op die gesondheidssektor. Die soeke na nuwe antimikrobiese middels en behandelings is dus van uiterste belang en sal altyd ‘n integrale rol in geneeskunde navorsing speel. Antimikrobiese peptiede (AMPe) kan moontlik as alternatief tot antibiotika dien, of kan in kombinasie daarmee gebruik word om die ontwikkeling van antimikrobiese- weerstandbiedenheid te verhoed. AMPe speel ‘n rol in ingebore beskerming en word deur soogdiere, plante, reptiele, voëls, visse en insekte geproduseer. AMPe van bakterieë (bakteriosiene), veral die van melksuurbakterieë (MSB), wek toenemende belangstelling as antimikrobiese middels vir die behandeling van bakteriële infeksies. Nanovesels, wat deur middel van ‘n elektrospin proses geproduseer word, het eienskappe wat hul aanloklik maak as wondbedekking, naamlik hoë suurstof deurlaatbaarheid, verskeie porie grottes, ‘n hoë oppervlakte tot volume verhouding, sowel as ‘n morfologiese struktuur wat die ekstrasellulêre matriks naboots. Die vermoë om ‘n verskeidenheid biologies aktiewe komponente in nanovesels te inkorporeer verhoog hul potensiaal as wondbedekkingsmateriaal. ‘n Unieke benadering is die inkorporasie van bakteriosiene van MSB in nanovesels om ‘n antimikrobiese wondbedekking te ontwikkel. In hierdie studie is die vermoë om bakteriosiene van MSB in nanovesels te inkorporeer, deur middel van ‘n mede-elektrospin proses, ondersoek. Plantarisien 423, geproduseer deur Lactobacillus plantarum 423, was suksesvol deur die mede-elektrospin proses in poliëtileen oksied (PEO) nanovesels geinkorporeer. Plantarisien 423 het na die elektrospin proses steeds sy antimikrobiese aktiwiteit behou en het die groei van Lactobacillus sakei DSM 20017T en Enterococcus faecium HKLHS geïnhibeer. Lewende selle van L. plantarum 423 was ook suksesvol deur die mede-elektrospin proses in PEO nanovesels geinkorporeer, alhoewel die lewensvatbaarheid van die selle effens afgeneem het. ‘n Nanovesel matriks is ontwikkel om die vrystelling van plantarisien 423 en bakteriosien ST4SA, geproduseer deur Enterococcus mundtii ST4SA, te beheer deur PEO en poli(D,L-melksuur) (PDLMS) in ‘n geskikte oplosmiddel te vermeng voor die elektrospin proses. Nanovesels is geproduseer wat die bakteriosiene oor ‘n verlengde tydperk kon vrystel. ‘n PEO:PDLMS (50:50) nanovesel matriks het sy stuktuur die beste behou tydens inkubasie by 37 °C en het aktiewe plantarisien 423 en bakteriosien ST4SA vrygestel. Nisien A was met dieselfde tegniek in PEO:PDLMS (50:50) geinkorporeer en nisien A, wat deur die nanovesels vrygestel was, het die groei van Staphylococcus aureus in vitro geïnhibeer. Die nisien A-bevattende nanovesel matriks het die aantal lewende selle van S. aureus noemenswaardig verminder in geïnfekteerde wonde en kon die genesing van wonde, wat nie geïnfekteer was, stimuleer. Sover ons kon vastel is hierdie die eerste gepubliseerde navorsing wat toon dat bakteriosiene, geinkorporeer in nanovesels, gebruik kan word om vel infeksies te beheer en wondgenesing te stimuleer.
13

Délivrance moléculaire par contrôle de la dynamique de gels supports : étude en vue de l'élaboration d'un nouveau type de pansement / From drug delivery through control of gel dynamics to the elaboration of a new type of wound dressing

Klak, Marie-Cécile 05 May 2011 (has links)
Les gels sont des solides mous constitués d'un réseau de molécules emprisonnant une phase liquide. Certains gels constitués de polymères biologiques sont appelés biogels. Biocompatibles, biorésorbables et déformables, ils possèdent une structure similaire à la matrice extracellulaire. De plus, la phase aqueuse d'un gel représente 95% de sa masse. Il est donc possible d'inclure des molécules au sein du réseau gélifié et de les faire diffuser vers l'extérieur. Ces qualités confèrent aux biogels de grandes potentialités en tant que biomatériaux innovants et systèmes de délivrance thérapeutique.Durant cette thèse, nous avons étudié la diffusion des molécules à partir de différents gels de gélatine.Dans un premier temps la diffusion à partir d'un gel chimique à été caractérisée grâce à l'utilisation de différentes molécules modèles. Elles balaient une large gamme de poids moléculaire et de charge ionique. Il a été montré que la diffusion depuis ces gels dépend de la nature du réseau de gélatine et de la nature des molécules diffusantes.Dans un second temps, les gels chimiques de gélatine ont été modifiés afin de contrôler et stimuler la libération moléculaire. Cinq nouvelles matrices gélifiées ont donc été synthétisées puis testés en diffusion. La phase sol du gel a tout d'abord été modifiée à l'aide d'un polymère viscosigène : l'alginate. Celui-ci limite la diffusion de certaines molécules. De plus son hydrolyse progressive induit la libération graduelle de molécules piégées. Le réseau de gélatine a ensuite été modifié. La synthèse d'un deuxième réseau au sein du gel de gélatine augmente ses capacités de rétention. Enfin l'utilisation de la technologie enzgel permettant la resolubilisation enzymatique contrôlée et programmée du gel de gélatine permet la libération massive et totale des molécules.Dans un troisième temps, l'ensemble des résultats de diffusion a permis la mise au point d'un unique modèle mathématique de diffusion pour l'ensemble des matrices. Ce modèle repose sur la deuxième loi de Fick et prend en compte l'encombrement stérique au sein du réseau de gélatine. Ainsi, il est possible de prévoir la diffusion en fonction de la nature du réseau et de la molécule diffusante.Enfin les résultats ont été utilisés dans le but de développer un pansement actif permettant de stimuler la cicatrisation des plaies chroniques. / Gels are soft matter composed of a liquid phase entrapped in a polymer network. Biopolymers can form gels, and then called biogels. Biocompatible, bioresorbable, these structures are really closed to extracellular matrix. Furthermore, aqueous phase represents 95% of the whole gel. Its possible to include molecules inside this liquid phase. Molecules are then released from the gel to the external environment.During this PhD project, we have studied the molecular release from different gelatin matrices.First, the release of a large range of molecules from chemical gelatin gel was studied. Different molecular weights and ionic charges were compared. The results show that the release depend on both the network structure and the include molecule characteristics. Moreover, the simultaneous release of two different compounds is possible.In the second part of the manuscript, gelatin gel was modified in order to control or stimulate the release. Five matrices were synthesised and tested. At first, alginate, a viscous polymer was introduced into the aqueous phase. Alginate is able to limit diffusion and its hydrolysis stimulates molecular release. Then, the gelatin network itself was modified. The synthesis of a second network within gelatin gel increases the entrapment of molecules. On the contrary, the use of ephemeral gels, where gelatin network hydrolysis is programmed and timed-controlled, leads to stimulate the molecular release.Then, a simple model elaborated from Fick's second law was constructed to describe these different delivery systems. The originality of the model resides in the consideration of the steric hindrance inside the gel. This unique model is able to predict correctly the release kinetics of small and large molecules, with or without interaction with the solid network, the concomitant release of two molecules and the release from ephemeral gels.Finally, all results were used in order to develop a new wound dressing able to deliver drugs and stimulate chronics wound healing.
14

Development of biocompatible multi-drug conjugated nanoparticles/smart polymer films for biomedicinal applications

Greenhalgh, Kerriann R 01 June 2007 (has links)
It has been reported by the American Burn Association that 4,000 people die every year due to burn injury. After survival of the initial trauma, the next major obstacle that must be overcome is combating bacterial infection, the primary cause of mortality for burn victims (Chapter 1). The polyacrylate nanoparticle drug delivery system was created to provide a water-based solution for delivery of highly lipophilic antimicrobials; such as N-thiolated β-lactams, however, with the success of this system for these antimicrobials, it was extended towards other, commercially-available water-soluble antimicrobials through acrylation of the drug monomers, including those with observed bacterial resistance (Chapter 2). Various antibiotics were incorporated into this polyacrylate nanoparticle delivery system by either encapsulation or covalent attachment, and the antibacterial activity was determined in vitro (Chapter 3). Since current treatment of burn wound infections calls for numerous antimicrobials in order to combat the vast array of microbes that may be present in the wound, a multi-drug conjugated nanoparticle system was constructed and analyzed for antibacterial activity against many pathogens commonly found in burn wounds (Chapter 4). In vitro antibacterial assays suggest that the nanoparticle delivery system rejuvenated the activity of penicillin-based antibiotics against formerly resistant microbes, such as methicillin-resistant Staphylococcus aureus. The multi-drug conjugated nanoparticle emulsion had the added benefit of forming a drug-conjugated polyacrylate polymer film through air-drying and polymer coalescence. Upon topical application to a skin abrasion in a mouse model, a protective barrier was created over the wound. This film exhibits mechanical properties similar to elastin, a pliant biological material, giving it the elasticity and flexibility required to move and interact with the wound in the same fashion as intact skin (Chapter 5). This film also permits diffusion of essential nutrients and small molecules (such as oxygen and water) required for wound healing. The emulsion was able to be combined with other biological materials, such as collage, to form a biocomposite material expressing the most optimal properties from each constituent (Chapter 6). In vitro cytotoxicity analysis (Chapter 7) and in vivo toxicity studies (Chapter 8) produced positive results indicating that the multi-drug conjugated nanoparticle emulsion is a promising new treatment for the burn wound and other topical skin and soft tissue infections.
15

Investigation into the proteolytic activity in chronic wound fluid and development of a remediation strategy

Rayment, Erin Alexis January 2007 (has links)
Chronic ulcers are an important and costly medical issue, causing their sufferers a large amount of pain, immobility and decreased quality of life. The common pathology in these chronic wounds is often characterised by excessive proteolytic activity, leading to the degradation of both the extracellular matrix, as well as key factors critical to the ulcer's ability to heal. As matrix metalloproteinases (MMPs), a large family of zinc-dependent endopeptidases, have been shown to have increased activity in chronic wound fluid (CWF), it was hypothesised that this specific proteolytic activity was directly related to an ulcer's chronic nature. Although previous studies have identified elevated proteases in CWF, many have reported contradictory results and therefore the precise levels and species of MMPs in CWF are poorly understood. The studies reported herein demonstrate that MMP activity is significantly elevated in CWF compared with acute wound fluid (AWF). In particular, these studies demonstrate that this proteolytic activity can be specifically attributed to MMPs and not another class of proteases present in wound healing. Furthermore, it is shown that MMP-9 is the predominant protease responsible for matrix degradation by CWF and is an indicator of the clinical status of the wound itself. Moreover, MMP-9 can be inhibited with the bisphosphonate alendronate, in the form of a sodium salt, a functionalised analogue, and also tethered to a synthetic biocompatible hydrogel compromised of aqueous poly (2-hydroxy methacrylate) PHEMA synthesised in the presence of poly(ethylene glycol) (PEG). Together, these results highlight the potential use of a tethered MMP inhibitor as an improved ulcer treatment to inhibit protease activity in the wound fluid, while still allowing MMPs to remain active in the wound bed where they perform vital roles in the activation of growth-promoting agents and immune system regulation.
16

Desenvolvimento e caracterização de membranas de quitosana para recobrimento de feridas e liberação controlada de farmacos / Development and characterization of chitosan membranes for wound dressing and drug controlled release

Campos, Maria Gabriela Nogueira 14 August 2007 (has links)
Orientador: Lucia Helena Innocentini Mei / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-08T22:26:42Z (GMT). No. of bitstreams: 1 Campos_MariaGabrielaNogueira_D.pdf: 3267625 bytes, checksum: cbe988c7770c0cc05f7db21410bf5cb7 (MD5) Previous issue date: 2007 / Resumo: O tratamento de feridas de pele (queimaduras, úlceras, feridas cirúrgicas e de diabétes) é uma problemática mundial que vem sendo amplamente discutida e estudada devido às complicações decorrentes do processo de cicatrização, tais como infecções, septicemia e até óbito. A pele é a interface do organismo humano com o meio externo e quando esta barreira é ferida, a infecção por microorganismos, bem como a perda de fluidos e desidratação são conseqüências temíveis. Portanto, um recobrimento de ferida deve ser utilizado afim de proteger a mesma da invasão de microorganismos e da perda de fluidos, além de substituir as funções da pele. Os recobrimentos de ferida disponíveis comercialmente são principalmente à base de colágeno. Entretanto, devido ao alto custo desta matéria-prima, a busca de novos materiais para a confecção de recobrimentos de ferida vem sendo constante. A quitosana é um biopolímero derivado da quitina, o polissacarídeo mais abundante na natureza depois da celulose, encontrada principalmente no exoesqueleto de insetos e crustáceos. Além de biocompatível e biodegradável, a quitosana apresenta interessantes propriedades biológicas, tais como atividades bactericida, fungicida, hemost~tica, antitumoral e imuno-adjuvante. O processo de produção de quitosana é econômica e ambientalmente viável, pois utiliza subprodutos da indústria pesqueira como matéria-prima. Sendo assim, o preço da quitosana purificada é cerca de 20 vezes menor que o do colágeno na mesma condição. Por estas razões, a quitosana vem sendo amplamente estudada e empregada no tratamento de feridas, nas formas de filmes, membranas, matrizes porosas, géis e até mesmo soluções. No sentido de melhorar suas propriedades, plastificantes, reticulantes e outros polímeros também são utilizados em associação com a quitosana afim de se obter um material viável para utilização. No presente trabalho, membranas de quitosana para recobrimento de feridas foram desenvolvidas, caracterizadas e testadas in vitro e in vivo. O efeito do D-sorbitol como plastificante e o do hexametileno diisocianato . como agente reticulante também foi estudado. Além disso, sistemas de liberação controlada de drogas à base de quitosana foram desenvolvidos e a liberação de gentamicina e sulfadiazina de prata foi avaliada in vitro. O D-sorbitol mostrou-se um bom plastificante para as membranas de quitosana, pois melhorou as propriedades mecânicas e aumentou a permeabilidade ao vapor de água. Além disso, não apresentou citotoxicidades direta e indireta. O hexametileno diisocianato foi utilizado como agente reticulante da quitosana e foi previamente bloqueado com bissulfito de sódio, afim de proteger os grupos reativos e aumentar o rendimento da reação de reticulação. As membranas reticuladas de quitosana não apresentaram citotoxiddade e mostraram-se eficientes sistemas de liberação controladà degentamicina e sulfadiazina de prata. / Abstract: Skin wounds treatment (burns, ulcers, surgical and diabetes wounds) is a world-wide problem that has been widely argued and studied due to the healing process complications, such as infections, septicemia and death. The skin is the interface of the human organism with the external environment and when this barrier is wounded, microorganism infections, as well as the loss of fluids and dehydration are possible consequences. Therefore, a wound dressing must be used to protect the wound from microorganisms' invasion and loss of fluids, besides substituting functions of the lost skin. Commercially available wound dressings are mainly based on collagen. However, because of the high cost of this raw material, the search for new materiais for wound dressings has been continuous. Chitosan is a biopolymer derived from chitin, the most abundant polysaccharide found in nature after cellulose, found mainly in insects and crustaceans exoskeletons. Beyond biocompatible and biodegradable, chitosan also presents interesting biological properties, such as bactericidal, fungicidal, hemostatic, immune-adjuvant and anti-tumor activities. The process of chitosan production is economic and environmentally viable; since it uses fishing industry by-products a~ raw material. Thus, pure chitosan price is about 20 times cheaper than collagen one. For these reasons, chitosan has been widely studied and employed in the treatment of wounds like film, membrane, porous màtrix, gel and solution. Moreover, plasticizers cross linkers and other polymers are also used in association with chitosan to improve the obtained material properties. In this present work, chitosan membranes for wound dressing had been developed and characterized. The use of D-sorbitol as plasticizer and hexamethylene diisocyanate as cross-linker also was investigated. Moreover, chitosan based drug release systems based was developed and the releases of gentamicin and silver sulfadiazine were ín vítro evaluated. D-sorbitol revealed a good plasticizer for chitosan membranes: it improved mechanical properties and increased water vapor permeability. Moreover, it did not show direct and indirect cytotoxicity. Hexamethylene diisocyanate was previous/y blocked with sodium bisulfite to protect reactive groups and to increase chitosan cross linking reaction yield. Cross linked membranes had not shown cytotoxicity and had revealed to be efficient systems for controlled release of gentamicin and silver sulfadiazine. / Doutorado / Ciencia e Tecnologia de Materiais / Doutor em Engenharia Química
17

Fibers and Textiles Produced from Chitin and Chitosan : A Literature Study For Different Production Methods

Hameed, Doaa, Manouel, Tamar January 2020 (has links)
Ökningen av världspopulationen har orsakat en ökad avfallsgenerering. Avfallet kan innehålla betydelsefulla ämnen, vilka kan användas som råvaror i många olika material och för olika ändamål. Därför har omfattande forskning genomförts för att ta till vara på avfall som orsakar miljöföroreningar och ur dessa utveckla mer hållbara och biologiskt nedbrytbara material. Exempel på detta är fibrer och textilier framställda av polysackaridmaterial, särskilt från kitin och kitosan, som finns tillgängliga som biprodukt från såväl skaldjur som insekter och cellväggar från svampar. Kitin är efter cellulosa den vanligaste aminopolysackarid-polymeren som har en liknande struktur, medan kitosan är den deacetylerade formen av kitin som är den mest välkända och det viktigaste derivatet av kitin. Kitosan kan framställas från kitin genom antingen kemisk deacetylering eller enzymatiska beredningar, men för kommersiell skala idag, är produktion av kitosan med kemisk metod som deacetylering av kitin med en alkali såsom NaOH, mer lämplig och att föredra. Både kitin och kitosan är biobaserade material som har speciella egenskaper såsom hög specifik styvhet och hållfasthet, samtidigt som biologisk nedbrytbarhet är möjlig. Dessutom förekommer materialen rikligt i naturen, vilket gör dem till passande och konkurrenskraftiga ersättare till traditionella fibrer. Textilier är en stor källa till koldioxidutsläpp på grund av massiv global produktion och att även icke-nedbrytbara fibrer i vissa fall används i produktionen. Fibrer är den elementära enheten i textilier förutom bomull, som traditionellt används för textilproduktion. Det finns olika typer av fibrer som vanligtvis delas in i syntet- och biobaserade fibrer härrörande från förnybara resurser. Dessa förnybara fibrer har skapat ett stort intresse från världens textiltillverkare för att ställa om sin produktion och exempelvis producera gasbindor med återvinningsbara och biologiskt nedbrytbara material. Användningen av kitin och kitosan i textilindustrin är mycket intressant och viktig, dels på grund av deras mångsidighet och stora överflöd i naturen, dels då materialen annars anses vara spill eller restprodukter utan signifikant betydelse. Syftet med denna avhandling var att göra en litteraturöversikt om metoder för produktion av fibrer och textilier från kitin och kitosan, samt att undersöka hur de kan användas och dess miljövänliga aspekter. I denna avhandling har olika metoder baserade på många undersökningar och experiment introducerats, för att förstå och utvärdera möjliga processer för bildning av kitin- och kitosanfibrer. Dessutom har egenskaperna hos de framtagna fibrerna såsom draghållfasthet och töjning undersökts. För kitinproduktion har fem olika metoder studerats med användning av olika lösningsmedel av joniska vätskor såsom 1-etyl-3-metylimidazoliumacetat [C2mim] OAc, 1-butyl-3-metylimidazoliumklorid [C4mim] Cl och 1-etyl-3-metylimidazoliumklorid [C2mim] Cl, triklorättiksyra (TCA) och metylenklorid, en kombination av TCA, klorhydrat och metylenklorid, en blandning av myrsyra (FA), diklorättiksyra (DCA) och isopropyleter (iPE), liksom en direkt upplösning i NaOH/tiourea/urea. Produktion av nanofibrer från krabbskal, räkskal, kommersiella kitinpulver och svamp har undersökts, samt sårförband som en icke-vävd textil, genom att undersöka två olika produktionsmetoder. Många studier på kitosanproduktion har listats med fokus på typen av spinnteknik såsom våtspinning med användning av en cellulosa/kitosan-kompositlösning samt fibrer bildade av myrsyramodifierad kitosan. Dessutom listas olika typer av tekniker för torrspinning, torrstråle-våtspinning och elektrospinning. Slutligen har sårförbandsprocessen med användning av icke-vävda textilier av chitosan/hyaluronan också inkluderats. Sammanfattningsvis är produktion av textilfibrer med kitin och kitosan möjlig och kan göras på olika sätt. På grund av deras egenskaper och antimikrobiella effekter blir de intressanta alternativ till medicinska tillämpningar såsom suturer, sårförband, vävnadsteknik och antimikrobiellt medel. I likhet med andra material har kitin och kitosan fördelar, men även vissa nackdelar såsom svag och låg draghållfasthet hos de framtagna fibrerna och att de är delvis lösliga i substanser med pH under 5,5. Produktion av fibrer och textilier baserade på kitin och kitosan är fortfarande en utmaning på grund av de många modifieringssteg som krävs. Bland annat måste man ta hänsyn till lösningsmedlet som används för upplösning, välja rätt spinnteknik samt att använda ett lämpligt koagulationsbad följt av en flerstegs tvätt- och torkningsprocess. Dessa metoder hjälper till för att uppnå önskade fibrer med en mycket god kvalitet. För att uppnå en kostnadseffektiv, miljövänlig, konkurrenskraftig och storskalig textilproduktion - särskilt inom klädindustrin - krävs därför framtida arbete för att förfina och utveckla tekniken. / The growing of the world population caused an increase in waste generation which may contain high-value substances that can be used as raw materials in many applications. Therefore, tremendous research has been done towards the conversion of those wastes, that cause environmental pollution, in more sustainable and biodegradable materials. Part of these materials are fibers and textiles produced from polysaccharide materials especially from chitin and chitosan. Both chitin and chitosan are available as a by-product of seafood as well as in insects and cell walls of fungi, and can be used in many different applications. Chitin is the most abundant amino polysaccharide polymer after cellulose which has a very similar structure to cellulose, while chitosan is the deacylated form of chitin and it is the well-known and the most important derivative of chitin. Chitosan can be produced from chitin by either chemical deacetylation or enzymatic preparations. However, at commercial scale nowadays, the production of chitosan by chemical method like deacetylation of chitin with an alkali such as NaOH, is more suitable and preferable. Both chitin and chitosan are bio-based materials that have special properties such as high specific stiffness and strength, they are biodegradable and plentifully available in the nature, which make them an active competitive to the production of the synthetic fibers. Textiles are a big source for carbon emissions because of their large volume production and origin, in some cases, from non-biodegradable fibers. Fibers are the elementary units of textiles besides cotton that is traditionally used for textile production. There are different types of fibers that are usually divided into synthetic- and bio-based fibers derived from renewable resources which are getting a lot of interest in order to produce more biodegradable materials. Therefore, using chitin and chitosan in the textile industry is very important due to their versatility and large abundancy in nature. Additionally, they are biodegradable, biocompatible, non-toxic, and they are essentially able to form fibers and textiles. The purpose of this thesis was to make a literature review about the methods for the production of fibers and textiles from chitin and chitosan, including their applications and their environmentally friendly aspects. Different methods have been introduced in this thesis based on many researches and experiments in order to understand and evaluate which are the possible processes for chitin and chitosan fiber formation as well as the properties of the resulted fibers such as tensile strength and elongation. For fiber production from chitin has been studied by using different solvents including ionic liquids such as 1-ethyl-3-methylimidazolium acetate [C2mim]OAc, 1-butyl-3-methylimidazolium chloride [C4mim]Cl and 1-ethyl-3-methylimidazolium chloride [C2mim]Cl, trichloroacetic acid (TCA) and methylene chloride, a combination of TCA, chloral hydrate and methylene chloride, a mixture of formic acid (FA), dichloroacetic acid (DCA) and isopropyl ether (iPE), as well as a direct dissolution in NaOH/ thiourea/ urea. Additionally, nanofibers production from crab shells, prawn shells, shrimp shells, commercial chitin powders and mushrooms has been studied. Finally, wound dressing which is one of the nonwoven fabrics applications is introduced by referring to two methods of production. For fiber production from chitosan, many studies have been listed focusing on the type of the spinning technique such as wet spinning by using a cellulose/chitosan composite solution as well as fibers formed from formic acid modified chitosan. In addition, dry spinning, dry-jet wet spinning and electrospinning techniques have been studied. The wound dressing process by using chitosan/hyaluronan nonwoven fabrics has also been introduced. In conclusion, the production of textile fibers made of chitin and chitosan is possible and can be made in different ways. And because of their properties as biocompatibility, nontoxicity as well as their antimicrobial effects, they become interesting candidates for medical applications such as in sutures, wound dressing, tissue engineering and as antimicrobial agent. Similar to other manufactural industries, the production of fibers and textiles from chitin and chitosan have many advantages such as good values for dry tensile strength and elongation at break, antimicrobial activity and many more. At the same time, this production has some disadvantages such as the weak and low tensile strength of the resulted fibers and that they are partially soluble at pH below 5.5. Producing fibers and textiles based on chitin and chitosan is still a challenge because of the many modification steps that are needed. The modifications include the solvent used for dissolution, choosing the proper spinning technique as well as using an appropriate coagulation bath followed by the conditions of washing and drying steps. Thus, the desired fibers with a very good quality mentioned before would be achieved. Therefore, a lot of future work is needed in this manner because the intention is to achieve a cost-effective, environmentally friendly and a competitive technology for the large scale textile production especially in clothing industries.
18

Optimalizace vlastností kolagenních pěn z rybího kolagenu pro medicínské a veterinární použití. / Fish collagen foam properties optimalization for medical and veterinary use.

Lukáč, Peter January 2021 (has links)
V průběhu projektu byly vyvinuty unikátní kolagenní pěny z kolagenu získaného z kůže sladkovodní ryby (kapr obecný, Cyprinus carpio). Pomocí síťování karbodiimidem byl překonán problém s nestabilitou kolagenní matrix z kolagenu získávaného z chladnokrevných živočichů při tělesné teplotě savců. Následně byly pěny impregnovány antibiotiky (gentamicin a vankomycin) a opětovně lyofilizovány, což je postup, který zajišťuje požadovanou koncentraci antibiotika bez rizika následného vymytí při dalších technologických krocích. Uvedený produkt je, na rozdíl od přípravků z nesíťovanéhokolagenu, stabilní i při sterilizaci gamma zářením. Finální sterilizovaný produkt byl testován in vivo na potkaním modelu infikované rány. Byla prokázána efektivita v léčbě potenciálně letální infekce Pseudomonas aeruginosa a kmene Stafylococcus aureus rezistentní k meticilinu (MRSA). Vzhledem k vysoké potřebě profylaxe a terapie infekcí pooperačních a jiných ran právě výše uvedenými polyrezistentními původci se jedná o slibný prostředek k budoucímu klinickému využití. Zkušenosti, které jsme získali v průběhu uvolnování ATB z kolagenních pěn budou v dalším vyvoji použity pro impregnaci zevní kolagenní vrstvy cévní protézy, čímž bychom mohli eliminovat jednu z největších nevýhod a rizik spojených s použitím umělých materiálu a tím je...
19

Electrochemically Regulated Polyelectrolyte Complex for Smart Wound Dressings

Allababdeh, Asma S. 05 May 2022 (has links)
No description available.
20

Élaboration et caractérisation de fibres mixtes Alginate / Chitosane / Elaboration and characterization of chitosan-coated alginate fibers

Dumont, Mélanie 20 December 2016 (has links)
Dans ces travaux de recherche, la préparation de fibres d'alginate de calcium revêtues de chitosane par un procédé de filage par mouillage et la caractérisation de ces fibres dont leur activité antibactérienne sont présentées. Un métier à filer à l'échelle pilote a été conçu et développé au cours de ces travaux de thèse pour l'élaboration de fibres d'alginate de calcium. Ces dernières, préalablement fabriquées, sont immergées dans une solution d'acétate de chitosane. Trois méthodes de coagulation de l'enduit de chitosane ont été explorés dont deux consistent en l'immersion des fibres dans un bain neutralisant : une solution de dihydroxyde de calcium ou une solution d'hydroxyde de potassium. La dernière méthode consistait à neutraliser le chitosane par séchage sous air chaud soufflé. Une caractérisation structurelle, mécanique et d'absorption des fibres, ainsi qu'un dosage du chitosane revêtu ont été réalisés. De plus, une évaluation antibactérienne a été accomplie par une méthode de comptage des UFC (Unité Formant Colonie) après 6 h d'incubation à 37 °C. L'incorporation de chitosane aux fibres d'alginate de calcium apporte une activité antibactérienne contre Staphylococcus epidermidis, Escherichia coli et divers Staphylococcus aureus tels que MSSA (Methicillin Sensitive Staphylococcus aureus), CA-MRSA (Community Associated Methicillin Resistant Staphylococcus aureus) et HA-MRSA (Healthcare Associated Methicillin Resistant Staphylococcus aureus). Ces fibres revêtues sont alors des candidats de choix pour l'élaboration de tissus destinés à la cicatrisation des plaies. Développer des compresses avec les propriétés hémostatiques et cicatrisantes de l'alginate de calcium combinées aux propriétés antibactériennes du chitosane peut être envisagé pour lutter contre les infections et plus particulièrement les maladies nosocomiales / In this work, the preparation of chitosan-coated alginate fibers by a wet spin process and the characterization of these fibers, particularly their antibacterial activities are presented. A pilot scale spinning machine was developed during this thesis for the elaboration of calcium alginate fibers. These last, preformed produced were immersed in chitosan acetate solutions. Three coagulation methods of the chitosan coating were explored two of which consist to the immersion of the fibers in a neutralizing bath: a calcium hydroxide solution or a potassium hydroxide solution. The last method is to neutralize chitosan by drying under hot air blown. Structural, mechanical and absorption characterization of fibers and a dose of the coated chitosan have been made. Furthermore, the antibacterial evaluation was achieved by a CFU (Colony-Forming Units) counting method after 6 h of incubation at 37 °C. The incorporation of chitosan on calcium alginate fibers brings antibacterial activities against Staphylococcus epidermidis, Escherichia coli and various Staphylococcus aureus strains namely MSSA (Methicillin Sensitive Staphylococcus aureus), CA-MRSA (Community Associated Methicillin Resistant Staphylococcus aureus) and HA-MRSA (Healthcare Associated Methicillin Resistant Staphylococcus aureus) which make these chitosan-coated fibers potential candidates for wound dressing materials. Developing a wound dressing with the haemostatic and healing properties of alginate combined with antibacterial properties of chitosan can be envisioned for fighting against the infections and more particularly nosocomial infections

Page generated in 0.4612 seconds