• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 4
  • 1
  • Tagged with
  • 41
  • 17
  • 10
  • 10
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Développement d'un photomultiplicateur gazeux cryogénique dédié à un télescope Compton au xénon liquide pour l'imagerie médicale

Duval, Samuel 01 December 2010 (has links) (PDF)
Une technique d'imagerie innovante reposant sur la localisation tridimensionnelle d'un radioisotope émetteur (bêta, gamma) à l'aide d'un télescope Compton au xénon liquide a été proposée au laboratoire SUBATECH en 2003. Cette technique, appelée imagerie 3 gammas, repose sur l'association d'une caméra à tomographie d'émission de positons pour la reconstruction des deux photons d'annihilation et d'une chambre à projection temporelle au xénon liquide pour la reconstruction du troisième photon. L'interaction de ce dernier avec le xénon liquide induit un signal de scintillation, lu avec un tube photomultiplicateur, qui permet de déclencher l'acquisition du signal d'ionisation, lu avec un MICROMEGAS (MICRO MEsh Gaseous Structure), donnant accès à la mesure de l'énergie et de la position de chaque interaction. Dans le cadre de ce développement, nous proposons une alternative à la lecture du signal de scintillation avec des tubes photomultiplicateurs classiques : un photomultiplicateur gazeux cryogénique de large surface. Ce photodétecteur est doté d'une photocathode réflective solide d'iodure de césium pour la photoconversion des photons UV et de microstructures amplificatrices telles que le THGEM (THick Gaseous Electron Multiplier), le MICROMEGAS et le PIM (Parallel Ionization Multiplier). Il devrait permettre une segmentation virtuelle du volume de xénon liquide afin de réduire l'occupation du télescope. Les premiers résultats obtenus à l'aide d'un premier prototype de petite surface à la température du xénon liquide (173 K) sont présentés.
22

IRM moleculaire a base de xenon hyperpolarise par laser

Tassali, Nawal 08 November 2012 (has links) (PDF)
L'imagerie par résonance magnétique (IRM) est une technique médicale incontournable permettant d'observer l'intérieur du corps de façon non invasive et non irradiante. L'IRM reste cependant connue pour souffrir d'une très faible sensibilité. Pour pallier cette limitation, une solution de choix est d'utiliser des espèces hyperpolarisées. Parmi les entités dont on peut augmenter la polarisation nucléaire et donc le signal RMN de plusieurs ordres de grandeur, le xénon se distingue par sa capacité à interagir avec son environnement proche, ce qui se traduit par une large gamme de déplacement chimique. L'objectif devient alors d'utiliser le xénon hyperpolarisé comme traceur. Le sujet de cette thèse porte sur le concept de sonde IRM 129Xe hyperpolarisé par laser pour la détection d'évènements biologiques. Dans cette approche, le xénon est vectorisé vers des cibles au moyen de systèmes hôtes fonctionnalisés puis détecté grâce à des séquences d'imagerie rapide. La conception et la mise au point d'un montage permettant la production de xénon hyperpolarisé par pompage optique par échange de spin sont décrites. Sont ensuite développées des études sur l'interaction du gaz rare avec de nouveaux cryptophanes susceptibles de constituer des molécules hôtes performantes. La mise en place de séquences IRM adaptées au caractère transitoire de l'hyperpolarisation et permettant l'utilisation optimale de l'échange du xénon dans les différents environnements est présentée. Des applications de biosondes IRM 129Xe pour la détection de cations métalliques et de récepteurs de surface cellulaire sont également décrites. Enfin, nos premiers résultats sur un modèle petit animal sont abordés.
23

caractérisation moléculaire par RMN : vers l'emploi de sondes extrinsèques

Huber, Gaspard 15 December 2006 (has links) (PDF)
Ce manuscrit résume mes activités de recherche en thèse, dans mes différents séjours post-doctoraux et mes premières années de recherche au Commissariat à l'Energie Atomique. Elles concernent la caractérisation de biomolécules par RMN, comme des sucres, des protéines, dia ou paramagnétiques. Le manuscrit aborde aussi la caractérisation des interactions protéines-eau, du métabolisme cellulaire, et la mesure de vitesses électroniques impliquant des protéines à plusieurs centres d'oxydoréduction. <br />J'aborde ensuite mon travail récent au sein d'une équipe spécialisée dans le xénon hyperpolarisé appliqué à la phase liquide, en particulier la caractérisation de cavités hydrophobes de protéines et la forte complexation du xénon par une famille de molécules-cage nommée cryptophanes.
24

Simulation de l'imagerie à 3γ avec un télescope Compton au xénon liquide

Mohamad Hadi, Abdul Fattah 17 June 2013 (has links) (PDF)
L'imagerie 3γ est une technique innovante d'imagerie médicale nucléaire qui est étudiée au laboratoire SUBATECH. Elle repose sur la localisation tridimensionnelle d'un radioisotope émetteur (β+, γ), le 44Sc, à l'aide d'un télescope Compton au xénon liquide. Le lieu de désintégration de ce radioisotope est obtenu par l'intersection de la ligne de réponse, construite à partir de la détection des deux photons de 511 keV issus de l'annihilation d'un positron, et du cône déterminé à partir du troisième photon. Un prototype de petite dimension XEMIS1 (XEnon Medical Imaging System) a été développé afin de faire la preuve expérimentale de la faisabilité de l'imagerie à 3γ. Les résultats de ce prototype sont très promoteurs en terme de résolution en énergie, de pureté du xénon liquide et de faible bruit électronique. La simulation Monte Carlo est un outil indispensable pour accompagner la R&D et évaluer les performances de la nouvelle technique d'imagerie proposée. Les travaux rapportés dans cette thèse concernent le développement de la simulation du système d'imagerie 3γ avec GATE (Geant4 Application for Tomographic Emission). De nouvelles fonctionnalités ont été implémentées dans GATE afin de simuler un détecteur de type TPC (Time Projection Chamber). Nous avons effectué une simulation du prototype XEMIS1 et obtenu des résultats en bon accord avec nos données expérimentales. La prochaine étape du projet consiste à construire une caméra cylindrique au xénon liquide pour l'imagerie du petit animal. Les résultats des simulations de cette caméra présentés dans cette thèse montrent la possibilité de localiser chaque désintégration le long de la ligne de réponse avec une très bonne précision et une bonne sensibilité de détection. Des premières images de fantômes simples, réalisées évènements par événements, et après reconstruction tomographiques ont également présentées.
25

Optimization of a single-phase liquid xenon Compton camera for 3γ medical imaging / Optimisation d'une camera Compton au xénon liquide à simple phase pour l'imagerie médicale 3γ

Gallego Manzano, Lucia 21 July 2016 (has links)
Les travaux décrits dans cette thèse sont centrés sur la caractérisation et l’optimisation d’une camera Compton à phase unique au xénon liquide pour des applications médicales. Le détecteur a été conçu pour exploiter les avantages d’une technique d’imagerie médicale innovante appelée l’imagerie 3γ. Elle vise à l’obtention de la position en 3D d’une source radioactive avec une très haute sensibilité et une réduction importante de la dose administrée au patient. L’imagerie 3γ est basée sur la détection en coïncidence de 3 photons gamma émis par un émetteur spécifique (+β, γ), le 44Sc. Un premier prototype de camera Compton au xénon liquide a été développé par le laboratoire Subatech à travers le projet XEMIS (Xenon Medical Imaging System), pour démontrer la faisabilité de l’imagerie 3γ. Ce nouveau système de détection comporte un système de cryogénie avancé et une électronique front-end à très faible bruit qui fonctionne à la température du xénon liquide. Ce travail a contribué à la caractérisation de la réponse du détecteur et à l’optimisation de la mesure du signal d’ionisation. L'influence de la grille de Frisch sur le signal mesuré a été particulièrement étudiée. Les premières preuves de la reconstruction Compton en utilisant une source de ²²Na (β+, Eγ = 1.274 MeV) sont aussi rapportées dans cette thèse et valident la preuve de concept de la faisabilité de l’imagerie 3γ. Les résultats présentés dans cette thèse ont joué un rôle essentiel dans le développement d’une camera Compton au xénon liquide de grandes dimensions pour l’imagerie des petits animaux. Ce nouveau détecteur, appelée XEMIS2, est maintenant en phase de construction. / The work described in this thesis is focused on the characterization and optimization of a single-phaseliquid xenon Compton camera for medical imaging applications. The detector has been conceived to exploit the advantages of an innovative medical imaging technique called 3γ imaging, which aims to obtain aprecise 3D location of a radioactive source with high sensitivity and an important reduction of the dose administered to the patient. The 3γ imaging technique is based on the detection in coincidence of 3gamma rays emitted by a specific (+β, γ) emitter radionuclide,the 44Sc. A first prototype of a liquid xenon Compton camera has been developed by Subatech laboratory within the XEMIS (Xenon Medical Imaging System) project, to proof the feasibility of the 3γ imaging technique. This new detection framework is based on an advanced cryogenic system and an ultra-low noise front-end electronics operating at liquid xenon temperature. This work has contributed to the characterization of the detector response and the optimization of the ionization signal extraction. A particular interest has been given to the influence of the Frisch grid on the measured signals. First experimental evidences of the Compton cone reconstruction using asource of ²²Na (β+, Eγ = 1.274 MeV) are also reported in this thesis, which demonstrate the proof of concept of the feasibility of the 3γ imaging. The results reported in this thesis have been essential for the development of a larger scale liquid xenon Compton camera for small animal imaging. This new detector, called XEMIS2, is now in phase of construction.
26

Modes d’exposition au xénon-133 dans un bâtiment réacteur / Exposure mode study to xenon-133 in a reactor building

Perier, Aurélien 14 October 2014 (has links)
Le travail décrit dans cette thèse porte sur l’évaluation du mode d’exposition externe et interne au xénon-133. Ce radionucléide est un des principaux produits de fission du combustible des réacteurs nucléaires. En cas de défaut de gaine combustible, le xénon-133 peut potentiellement exposer le personnel lors de ses interventions dans le bâtiment réacteur. En dosimétrie, les simulations Monte-Carlo sont des outils adaptés pour simuler le transport des rayonnements ionisants dans la matière. A partir des critères de radioprotection actuels, nous avons développé de nouvelles méthodes afin d’améliorer notre compréhension de l’exposition externe et interne auxénon-133 à l’intérieur d’un bâtiment réacteur. Ces nouvelles approches sont basées sur l’utilisation d’un fantôme anthropomorphe, d’une géométrie réaliste de bâtiment réacteur, de simulations Monte-Carlo GEANT4 et de modèles en compartiments. L’exposition externe dans un bâtiment réacteur a été menée en retenant un scénario d’exposition réaliste et conservatif. Nous avons quantifié le débit de dose efficace et le débit de dose équivalente au cristallin. L’exposition interne se produit lorsque le xénon-133 est inhalé. Les poumons sont les premiers organes exposés par l’inhalation du xénon-133, leur débit de dose équivalente a été quantifié. Un modèle biocinétique a été utilisé pour évaluer l’exposition interne au xénon-133. Cette thèse a permis de quantifier les grandeurs dosimétriques liées aux modes d’exposition externe et interne au xénon-133, d’étudier l’impact des changements de limites dosimétriques introduits par la Commission Internationale de Radioprotection prochainement retranscrits dans la réglementation française, et de comprendre la cinétique du xénon-133 dans le corps humain. Nous avons montré que les grandeurs dosimétriques sont nettement inférieures aux limites dosimétriques de la réglementation actuelle et future. / The work described in this thesis focuses on the external and internal dose assessment to xenon-133. During the nuclear reactor operation, fission products and radioactive inert gases, as ¹³³Xe, are generated and might be responsible for the exposure of workers incase of clad defect.Particle Monte Carlo transport code is adapted inradioprotection to quantify dosimetric quantities.The study of exposure to xenon-133 is conducted byusing Monte-Carlo simulations based on GEANT4, ananthropomorphic phantom, a realistic geometry of thereactor building, and compartmental models.The external exposure inside a reactor building isconducted with a realistic and conservative exposurescenario. The effective dose rate and the eye lensequivalent dose rate are determined by Monte-Carlosimulations. Due to the particular emission spectrum ofxenon-133, the equivalent dose rate to the lens of eyesis discussed in the light of expected new eye doselimits.The internal exposure occurs while xenon-133 isinhaled. The lungs are firstly exposed by inhalation, andtheir equivalent dose rate is obtained by Monte-Carlosimulations. A biokinetic model is used to evaluate theinternal exposure to xenon-133.This thesis gives us a better understanding to thedosimetric quantities related to external and internalexposure to xenon-133. Moreover the impacts of thedosimetric changes are studied on the current andfuture dosimetric limits. The dosimetric quantities arelower than the current and future dosimetric limits.
27

Ionisation du xénon à l'échelle du cycle optique et développement et caractérisation d'une source d'impulsions EUV appliquée à la technologie attoseconde

Gingras, Guillaume January 2015 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2015-2016 / Cette thèse constitue le fruit de plusieurs années de travaux principalement expérimentaux dans les domaines de la physique atomique et des champs laser intenses. Les premiers chapitres présentent les principes physiques pertinents à ce travail, les systèmes laser et les techniques de spectroscopie employées dans les expériences. Le travail comporte ensuite deux principaux volets. Le premier volet du travail scientifique original traite d'abord de l'étude des processus d'ionisation de l'atome de xénon par des impulsions laser ultra-brèves (7 fs) (chapitre 4) et dont la polarisation est modulée temporellement (chapitre 5). Au chapitre 2 est expliquée la technique de porte temporelle de polarisation ajustable permettant de raccourcir graduellement la durée effective d'une interaction lumière-matière. La spectroscopie ionique à temps de vol et la spectroscopie à imagerie photoélectronique sont employées respectivement pour étudier l'ionisation non séquentielle et les interactions multiphotoniques. Le chapitre 4 met d'abord en évidence la superposition de processus résonants et non résonants lors de l'ionisation multiphotonique du xénon par des impulsions ultra-brèves. Les probabilités pour l'ionisation multiple sont également obtenues et permettent de faire la distinction entre les domaines d'ionisation séquentielle et non séquentielle. Les résultats sont comparés avec un modèle d'ionisation non séquentielle développé au chapitre 3. Le chapitre 5 présente deux expériences dans lesquelles la durée d'interaction est réduite de façon continue jusqu'à l'ordre d'un cycle optique. D'abord, nous montrons la contribution d'un cycle optique du laser sur le processus de redifusion électronique vers son ion parent. Ensuite, en tirant avantage des règles de sélection, nous montrons la possibilité de confiner temporellement une transition multiphotonique résonante. Le deuxième volet du travail (chapitre 6) s'articule autour de la création et la caractérisation d'un système expérimental pour la production d'impulsions laser EUV ("Extreme UltraViolet") de durées attosecondes ([symbol]) selon le processus de génération d'harmoniques d'ordre élevé dans un milieu gazeux. Nous expliquons la démarche scientifique employée dans l'élaboration du projet et présentons un nouveau type de cellule gazeuse pour la production du rayonnement EUV. Nous abordons la caractérisation spectrale et présentons les procédures d'optimisation de l'émission EUV. Finalement, nous effectuons un bilan récapitulatif du dispositif en indiquant les améliorations et les cheminements possibles pour le travail futur. / This thesis is the result of several years of experimental work mainly in the fields of atomic physics and intense laser fields. The first chapters present the relevant physical principles for this work, the laser systems and the spectroscopic techniques used in our experiments. The work has then two main parts. The first part of the original scientific work, deals with the study of ionization processes of the xenon atom with few-cycle laser pulses (7 fs) (chapter 4) as well as with polarizationgated pulses (chapter 5). We begin in chapter 2, where we explain an experimental technique called continuously adjustable polarization gating technique developed to shorten the effective duration of an interaction. The time-of-flight mass spectroscopy and the photoelectron imaging spectroscopy are used to study the non sequential ionization processes and the multiphoton interactions respectively. The chapter 4 first highlights the superposition of resonant and non resonant ionization processes obtained with a few-cycle laser pulse. The probabilities for multiple ionization are experimentally obtained and allow the distinction between sequential and non sequential ionization processes. The results are compared with a model developed in chapter 3. The chapter 5 presents two experiments where the duration of interaction is reduced continuously up to the order of an optical cycle. First, we show the contribution to non sequential double ionization of an optical cycle by the rescattering process of an electron toward its parent ion. Then, taking advantage of the selection rules we show the possibility of confining a multiphoton resonant transition in the time domain. The second part of the work is presented in chapter 6 and revolves around the creation and characterization of a device for the production of extreme-ultraviolet (EUV) attosecond ([symbol]) pulses by using the high-order harmonic generation process in a gaseous medium. We explain the scientific approach used in developing the project and we present a new type of gas cell for the production of EUV radiation. We discuss the spectral characterization and we present procedures for optimizing the EUV emission. Finally, we conduct a summary assessment of the device by showing the improvements and possible paths for future work.
28

Etude et optimisation de l'efficacité énergétique d'enseignes lumineuses sans mercure excitées en régime d'impulsions électriques

Point, Sébastien 18 November 2008 (has links) (PDF)
Cette thèse présente les résultats de travaux de recherches menés sur les décharges luminescentes pulsées de néon xénon destinées à être utilisées en remplacement des décharges gaz rares-mercure pour les applications d'enseignes lumineuses publicitaires ou architecturales. Les enseignes lumineuses sont formées par des tubes fluorescents à cathodes froides fonctionnant à haute tension. Ceci les distingue notamment des tubes fluorescents pour l'éclairage général qui fonctionnent avec le même type de mélange mais à basse tension avec des cathodes chaudes préchauffées. Ces recherches ont bénéficié d'un partenariat GREMI-ADEME-Région Centre- Aupem Sefli, et sont motivées par la volonté de proposer une technologie sans mercure, qui est un élément toxique pour l'environnement et qui nécessite la mise en place de filières de récupération et de valorisation lourdes. On s'est attaché à vérifier et préciser certains mécanismes fondamentaux de la décharge. Ces travaux ont aussi permis de dégager des conditions permettant d'optimiser les caractéristiques des enseignes néon-xénon en terme de flux lumineux, d'efficacité énergétique, et de durée de vie. A l'issue de cette thèse, la durée de vie et l'efficacité des tubes fluorescents à cathodes froides basés sur une décharge pulsée de néon xénon les placent entre les lampes à incandescence et les tubes fluorescents au mercure. Des pistes existent pour poursuivre l'amélioration de l'efficacité lumineuse.
29

Simulation de l'imagerie à 3γ avec un télescope Compton au xénon liquide / Simulation of the 3γ imaging using liquid xenon Compton telescope

Mohamad Hadi, Abdul Fattah 17 June 2013 (has links)
L’imagerie 3γ est une technique innovante d’imagerie médicale nucléaire qui est étudiée au laboratoire SUBATECH. Elle repose sur la localisation tridimensionnelle d’un radioisotope émetteur (β+, γ), le 44Sc, à l’aide d’un télescope Compton au xénon liquide. Le lieu de désintégration de ce radioisotope est obtenu par l’intersection de la ligne de réponse, construite à partir de la détection des deux photons de 511 keV issus de l’annihilation d’un positron, et du cône déterminé à partir du troisième photon. Un prototype de petite dimension XEMIS1 (XEnon Medical Imaging System) a été développé afin de faire la preuve expérimentale de la faisabilité de l’imagerie à 3γ. Les résultats de ce prototype sont très promoteurs en terme de résolution en énergie, de pureté du xénon liquide et de faible bruit électronique. La simulation Monte Carlo est un outil indispensable pour accompagner la R&D et évaluer les performances de la nouvelle technique d’imagerie proposée. Les travaux rapportés dans cette thèse concernent le développement de la simulation du système d’imagerie 3γ avec GATE (Geant4 Application for Tomographic Emission). De nouvelles fonctionnalités ont été implémentées dans GATE afin de simuler un détecteur de type TPC (Time Projection Chamber). Nous avons effectué une simulation du prototype XEMIS1 et obtenu des résultats en bon accord avec nos données expérimentales. La prochaine étape du projet consiste à construire une caméra cylindrique au xénon liquide pour l’imagerie du petit animal. Les résultats des simulations de cette caméra présentés dans cette thèse montrent la possibilité de localiser chaque désintégration le long de la ligne de réponse avec une très bonne précision et une bonne sensibilité de détection. Des premières images de fantômes simples, réalisées évènements par événements, et après reconstruction tomographiques ont également présentées. / Nuclear medical 3γ imaging is an innovative technique which is studied at the SUBATECH laboratory. It isbased on the three-dimensional localization of a (β+, γ) radioisotope emitter, the 44Sc, by using a liquid xenon Compton telescope. The position of the disintegration of this radioisotope is obtained by the intersection of the line of response, built by the detection of two 511 keVphotons from the annihilation of a positron, and the cone determined by the third photon. A small prototype XEMIS1 (XEnon Medical Imaging System) was developed to demonstrate experimentally the feasibility of 3γ imaging. The results of this prototype are quite encouraging in terms of energy resolution, purity of liquid xenon and electronic noise. The Monte Carlo simulation is an indispensable tool to support the R&D and to evaluate the new proposed technique of imaging ; this thesis work is to develop the simulation of 3γ imaging system by using GATE (Geant4 Application for Tomographic Emission). New functionalities have been added to GATE to simulate a TPC (Time Projection Chamber) detector. We performed a simulation of XEMIS1 prototype and obtained results in good agreement with our experimental data. The next step of the project is to build a full liquid xenon cylindrical camera for the small animal imaging. The results presented in this thesis of the simulations of this camera demonstrate the ability to locate every decayalong the line of response with very good accuracy and good detection sensitivity. The first direct images of simple phantoms, realized event by event, and after tomographic reconstruction are also presented.
30

Conception et synthèse de nouvelles molécules cages pour des applications en IRM du Xénon / Conception and synthesis of new molecular cages for Xenon MRI applications

Delacour, Léa 19 September 2011 (has links)
L'Imagerie par Résonance Magnétique (IRM) est une technique d'imagerie médicale largement répandue dans les milieux hospitaliers pour le diagnostic de pathologies. Elle repose classiquement sur la détection du proton (IRM 1H) et permet de visualiser des tissus en profondeur avec une très bonne résolution temporelle et spatiale. Cependant, cette méthode souffre encore de sa faible sensibilité. Une des solutions consiste en l'introduction et la détection de xénon hyperpolarisé. En effet, le xénon est un gaz non toxique, très sensible à son environnement chimique et adapté pour l’IRM. Cependant, il n'est spécifique d'aucun récepteur biologique et nécessite des molécules particulièrement adaptées pour son encapsulation. La détection de cibles spécifiques se fait par des biosondes constituées de molécules cages fonctionnalisées par une antenne de reconnaissance d'un récepteur spécifique. Le xénon vient s'encapsuler dans cette molécule hôte et permet la localisation de la cible biologique. Parmi les molécules cages répertoriées dans la littérature, les cryptophanes présentent la plus forte affinité connue pour le xénon et sont donc les plus prometteuses. Les cryptophanes sont des molécules cages constituées de deux unités de type cyclotribenzylène reliées entre elles par trois chaînes pontantes. Ils ont été synthétisés pour la première fois par l'équipe d'A. Collet au Collège de France au début des années 1980. L'objectif de cette thèse a été de synthétiser et de fonctionnaliser de nouveaux cryptophanes. / Non-invasive proton magnetic resonance imaging (1H MRI) is a powerful clinical tool for the detection of numerous diseases. Although MRI contrast agents are often used to improve diagnostic specificity, this technique has limited applications in molecular imaging because of its inherently low sensitivity when compared to nuclear medicine or fluorescence imaging. Laser-polarized 129Xe NMR spectroscopy is a promising tool to circumvent sensitivity limitations. Indeed, optical pumping increases the nuclear spin polarization of xenon by several orders of magnitude (104 to 105), thus small amounts of gas dissolved in biological tissues (blood, lungs…) can be rapidly detected with an excellent signal-to-noise ratio. In addition, the high polarizability of the xenon electron cloud, which induces a very high sensitivity to its environment, makes this nucleus very attractive for molecular imaging. Detection of biomolecules can be achieved by biosensors, which encapsulate xenon atoms in molecular cages that have been functionalized to bind the desired biological target. Cage molecules such as cryptophanes have high affinity for xenon and thus appear as ideal candidates for its encapsulation. During this PhD thesis we worked on the synthesis and the functionalization of new cryptophanes.

Page generated in 0.0257 seconds