• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 35
  • 13
  • 4
  • Tagged with
  • 114
  • 76
  • 61
  • 59
  • 48
  • 28
  • 26
  • 20
  • 16
  • 16
  • 16
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Role of the human LIN complex in DNA damage induced regulation of gene expression / Die Rolle des humanen LIN Komplex in der Genregulation nach DNA Schädigung

Mannefeld, Mirijam January 2009 (has links) (PDF)
In jeder menschlichen Zelle entstehen täglich ca. 10.000 – 150.000 endogene DNA Schäden. Eine Anhäufung dieser Läsionen kann zu genetischer Instabilität führen und dadurch zur Krebsentwicklung beitragen. Daher ist eine schnelle DNA Schadensantwort nötig, um schwerwiegende Folgen für die Zelle zu vermeiden. Da bekannt ist, dass der Multiproteinkomplex LINC (auch humaner dREAM-Komplex genannt) an der transkriptionellen Regulation mitotischer und G2-spezifischer Gene beteiligt ist, sollte in dieser Arbeit seine Beteiligung an der DNA Schadensantwort genauer untersucht werden. In der vorliegenden Arbeit wird gezeigt, dass in normal wachsenden Zellen B-MYB an den LINC-Kernkomplex bindet, welcher sich aus 5 Proteinen zusammensetzt: LIN-9, LIN-54, LIN-52, LIN-37 und RbAp48. Treten DNA Schäden auf, dissoziiert B-MYB vom LINC Kernkomplex wobei gleichzeitig die Bindung von p130 und E2F4 an LINC induziert wird. Zusätzlich konnte gezeigt werden, dass der Signalweg, der die LINC Umlagerung vermittelt, sowohl p53- als auch p21-abhängig ist. p53 negative Zellen können nach Schädigung der DNA weder einen G1 Block induzieren noch einen G2 Block langfristig aufrechterhalten. Eine Erklärung für diese Schwächung des G2 Arrests liefern Daten dieser Arbeit: Da in DNA geschädigten p53 -/- Zellen keine LINC Umlagerung beobachtet werden kann und zusätzlich B-MYB verstärkt an LINC und die Zielpromotoren bindet, kommt es zu einer erhöhten G2/M Genexpression. Dies resultiert häufig in einem verfrühten Wiedereintritt in den Zellzyklus („checkpoint adaptation“). Eine Daten-Analyse primärer Brustkrebstumore zeigte außerdem, dass erhöhte B-MYB Genexpressionslevel mit einer erhöhte Rückfallgefahr und einer schlechten Prognose korrelieren, was möglicherweise auf die Funktion von B-MYB während der „checkpoint adaptation“ zurückzuführen ist. Schlussendlich lassen die Ergebnisse dieser Arbeit vermuten, dass die Hemmung der B-MYB Funktion in solchen Tumoren, die p53 Mutationen tragen, die Wahrscheinlichkeit eines Behandlungserfolges vergrößern und die Wahrscheinlichkeit eines Rückfalls senken könnte. / Around 10.000 – 150.000 endogenous DNA damage-induced lesions occur in a human body per day and cell. Accumulation of unrepaired lesions can lead to aneuploidy and the loss of genomic integrity which in turn contributes to tumor formation. Therefore, an efficient DNA damage response has to be initiated, in the end leading to cell cycle inhibition and induction of repair. Since it is known that a recently characterized human multiprotein complex named LINC (or human dREAM) together with B-MYB is involved in the regulation of G2/M gene expression (Plk1, cyclin B1, cdc2 etc.), its function in the DNA damage response was analyzed in this study. In growing cells B-MYB is associated to the LIN core complex which consists of 5 different proteins named LIN-9, LIN-54, LIN-52, LIN-37 and RbAp48. After induction of DNA damage B-MYB leaves the complex and binding of E2F4 and p130 to LINC is induced. Importantly, the upstream pathway leading to LINC rearrangement is dependent on the activation of p53 and p21. Interestingly, p53 -/- cells solely have the potential to block in the G2 phase of the cell cycle, thereby making them vulnerable for errors during G2 arrest induction or maintenance. Here I demonstrate that LINC rearrangement is absent in p53 -/- cells and that B-MYB/LINC binding to target gene promoters is increased. This in turn leads to an increased G2/M gene expression after DNA damage induction and triggers premature cell cycle re-entry (checkpoint adaptation). Significantly, B-MYB expression is increased in p53 mutated primary breast cancer tumors and correlates with poor prognosis and reoccurrence probably due to its function in checkpoint adaptation. This study gives evidence that inhibition of B-MYB gene expression or B-MYB function in p53 mutant tumors could be a good choice for adjuvant therapy.
42

Der zeitliche Verlauf von Parametern des Zellzyklus bei Patienten mit Fanconi Anämie / Development of Cell Cycle Parameter in Patients with Fanconi Anemia

Kochler, Yvonne January 2012 (has links) (PDF)
Es werden die Parameter Summe-G2/GF und G0/G1 der hochauflösenden, zweiparametrigen Zellzyklusanalyse von Lymphozyten bei Fanconi-Anämie-Patienten, bei denen mehrere Meßwerte vorliegen, im Hinblick auf Schwankungen untersucht. Nach Auswertung der Daten stellen die Werte keine konstanten Parameter für den einzelnen Patienten dar. Die Langzeitanalyse des Zellzyklusverhaltens peripherer Blutlymphozyten reflektiert jedoch weitgehend die klinische Situation der Patienten. / Two Parameter - Sum of G2/GF and G0/G1 - of twoparametric, high definition Cellcycle Analyses from Lymphocytes of Fanconi-Anemia-Patients were examined over the time. After Evaluation of Data it became clear, that Sum G2/GF and G0/G1-Parameter are not constant for each Patient over the time. But the longtime Analyses of peripheric Lymphocytes showed that they almost represent the clinical Situation of a Patient.
43

Die Bedeutung von LIN9 für die Regulation der Genexpression, die genomische Stabilität und die Tumorsuppression / The significance of LIN9 for gene regulation, genomic stability and tumor suppression

Wurster, Sebastian January 2014 (has links) (PDF)
Pocket proteins and E2F transcription factors regulate the expression of cell cycle associated genes and play a central role in the coordination of cell division, differentiation, and apoptosis. Disorders of these pathways contribute to the development of various human tumor entities. Despite intensive research in the field of cell cycle regulation many details are not yet understood. The LIN complex (LINC / DREAM) is a recently discovered human multiprotein complex, which dynamically interacts with pocket proteins and E2F transcription factors. An essential component of the LIN complex is the LIN9 protein. In order to obtain a better insight into the function of this protein in cell cycle regulation and tumorigenesis, a conditional Lin9 knockout mouse model was established in our laboratory. The primary objective of this study was the phenotypic characterization of embryonic fibroblasts (MEFs) from these mice. Shortly after inactivation of Lin9 cell proliferation was massively impaired. Multiple types of mitotic defects such as structural abnormalities of the spindle apparatus, aberrant nuclei, failed nuclear segregation and cytokinesis failure have been observed in Lin9-depleted cells leading to a dramatic increase in polyploid and aneuploid cells. Ultimately these serious aberrations result in premature cellular senescence. If the senescence of Lin9-deficient cells is overcome by the Large T antigen the cells can adhere to the loss of Lin9, but show severe genomic instability and grow anchorage-independently in soft-agar as a sign of oncogenic transformation. In the second part of the thesis the gene expression of Lin9-deficient cells was assessed by quantitative real time PCR analyses to determine, whether the mitotic abnormalities are caused by transcriptional defects. Here a significant reduction of mitotic gene expression was observed in Lin9-depleted cells. Additionally chromatin immunoprecipitation experiments were performed to clarify the underlying molecular mechanisms. Compared to control cells epigenetic alterations at the promoters of mitotic target genes with regard to activating histone modifications were found in Lin9-deficient MEFs. In the last section of this study, the effects of Lin9 heterozygosity were analyzed. Lin9 heterozygous MEFs showed normal proliferation, although expression of different mitotic genes was slightly reduced. It appeared, however, that the mitotic spindle checkpoint of Lin9 heterozygous MEFs is weakened and thus over several cell generations an increase in polyploid cells was observed. Soft-agar assays showed that Lin9 heterozygosity contributes to oncogenic transformation. Taken together, these results document a crucial role of LIN9 in the regulation of cell cycle-associated gene expression. LIN9 is an essential factor for cell proliferation on one hand, while at the same time it functions as a tumor suppressor. / Pocket-Proteine und E2F-Transkriptionsfaktoren regulieren die Expression von Zellzyklus-assoziierten Genen und spielen eine zentrale Rolle bei der Koordination der Zellteilung, Differenzierung und Apoptose. Störungen dieser Signalwege tragen zur Entstehung zahlreicher Tumorentitäten beim Menschen bei. Trotz der intensiven Untersuchung der Zellzyklusregulation sind viele Details noch unverstanden. Der LIN-Komplex (LINC / DREAM) ist ein kürzlich entdeckter humaner Multiprotein-komplex, welcher dynamisch mit Pocket-Proteinen und E2F-Transkriptionsfaktoren interagiert. Eine essentielle Komponente des LIN-Komplexes ist das LIN9-Protein. Um die Funktion dieses Proteins bei der Zellzyklusregulation und Tumorentstehung genauer untersuchen zu können, wurde in unserer Arbeitsgruppe ein konditionelles Lin9-Knockout-Mausmodell etabliert. Primäres Ziel der Arbeit war es, den Phänotyp embryonaler Fibroblasten (MEFs) aus diesen Mäusen zu charakterisieren. Bereits kurz nach Inaktivierung von Lin9 konnte ein stark verlangsamtes Zellwachstums beobachtet werden. In Lin9-depletierten MEFs wurden multiple mitotische Defekte detektiert, die u. a. strukturelle Auffälligkeiten des Spindelapparates, aberrante Zellkerne, Störungen der Chromosomensegregation sowie zytokinetische Defekte umfassen und in einer dramatischen Zunahme polyploider und aneuploider Zellen resultieren. Im Langzeitverlauf führen diese erheblichen Aberrationen zu einer vorzeitigen zellulären Seneszenz. Wird diese durch das Large T-Protoonkogen durchbrochen, können sich MEFs an den Verlust von Lin9 adaptieren, zeigen dann jedoch eine hochgradige genomische Instabilität und Substrat-unabhängiges Wachstum im Weichagar als Zeichen onkogener Transformation. Im zweiten Abschnitt der vorliegenden Arbeit wurde die Genexpression in Lin9-defizienten MEFs mittels quantitativer Real Time-PCR untersucht um zu klären, ob die beschriebenen Defekte auf Veränderungen der transkriptionellen Aktivität zurück-zuführen sind. Dabei wurde eine erhebliche Reduktion der Expressionslevel mitotischer Gene nach Verlust von Lin9 beobachtet. Des Weiteren wurden zur Klärung der zu Grunde liegenden molekularen Mechanismen Chromatin-Immunpräzipitations-Experimente (ChIP) durchgeführt. Im Vergleich zu Kontrollzellen wurden dabei in Lin9-defizienten Zellen signifikante epigenetische Veränderungen bezüglich aktivierender Histon-Modifikationen an den Promotoren mitotischer Lin9-Zielgene festgestellt. Im letzten Abschnitt der Arbeit sollten die Auswirkungen des heterozygoten Verlustes von Lin9 analysiert werden. Dabei zeigte sich, dass Lin9-haploinsuffiziente Zellen normal proliferieren, obwohl die Expression verschiedener G2/M-Gene leicht vermindert war. Es wurde jedoch eine Schwächung des mitotischen Spindelkontrollpunktes und in der Folge über mehrere Zellgenerationen eine Zunahme polyploider Zellen beobachtet. Mit Weichagar-Assays konnte gezeigt werden, dass bereits der heterozygote Verlust des Lin9-Gens zur onkogenen Transformation beiträgt. Zusammengenommen dokumentieren diese Studien, dass LIN9 eine entscheidende Bedeutung bei der Regulation von Zellzyklus-assoziierten Genen spielt und sowohl einen essentiellen Faktor für die Zellproliferation darstellt als auch durch die Gewährleistung genomischer Stabilität tumorsuppressive Eigenschaften aufweist.
44

Characterization of the mitotic localization and function of the novel DREAM target GAS2L3 and Mitotic kinesins are regulated by the DREAM complex, often up-regulated in cancer cells, and are potential targets for anti-cancer therapy / Charakterisierung der mitotischen Lokalisation und Funktion von GAS2L3, eines kürzlich gefundenen Zielgens des DREAM Komplexes und Mitotische Kinesine werden vom DREAM Komplex reguliert, sind in Krebszellen häufig hochreguliert und sind potentielle Zielle für die Krebstherapie

Wolter, Patrick January 2015 (has links) (PDF)
The recently discovered human DREAM complex (for DP, RB-like, E2F and MuvB complex) is a chromatin-associated pocket protein complex involved in cell cycle- dependent gene expression. DREAM consists of five core subunits and forms a complex either with the pocket protein p130 and the transcription factor E2F4 to repress gene expression or with the transcription factors B-MYB and FOXM1 to promote gene expression. Gas2l3 was recently identified by our group as a novel DREAM target gene. Subsequent characterization in human cell lines revealed that GAS2L3 is a microtubule and F-actin cross-linking protein, expressed in G2/M, plays a role in cytokinesis, and is important for chromosomal stability. The aim of the first part of the study was to analyze how expression of GAS2L3 is regulated by DREAM and to provide a better understanding of the function of GAS2L3 in mitosis and cytokinesis. ChIP assays revealed that the repressive and the activating form of DREAM bind to the GAS2L3 promoter. RNA interference (RNAi) mediated GAS2L3 depletion demonstrated the requirement of GAS2L3 for proper cleavage furrow ingression in cytokinesis. Immunofluorescence-based localization studies showed a localization of GAS2L3 at the mitotic spindle in mitosis and at the midbody in cytokinesis. Additional experiments demonstrated that the GAS2L3 GAR domain, a putative microtubule- binding domain, is responsible for GAS2L3 localization to the constriction zones in cytokinesis suggesting a function for GAS2L3 in the abscission process. DREAM is known to promote G2/M gene expression. DREAM target genes include several mitotic kinesins and mitotic microtubule-associated proteins (mitotic MAPs). However, it is not clear to what extent DREAM regulates mitotic kinesins and MAPs, so far. Furthermore, a comprehensive study of mitotic kinesin expression in cancer cell lines is still missing. Therefore, the second major aim of the thesis was to characterize the regulation of mitotic kinesins and MAPs by DREAM, to investigate the expression of mitotic kinesins in cancer cell line panels and to evaluate them as possible anti-cancer targets. ChIP assays together with RNAi mediated DREAM subunit depletion experiments demonstrated that DREAM is a master regulator of mitotic kinesins. Furthermore, expression analyses in a panel of breast and lung cancer cell lines revealed that mitotic kinesins are up-regulated in the majority of cancer cell lines in contrast to non-transformed controls. Finally, an inducible lentiviral-based shRNA system was developed to effectively deplete mitotic kinesins. Depletion of selected mitotic kinesins resulted in cytokinesis failures and strong anti-proliferative effects in several human cancer cell lines. Thus, this system will provide a robust tool for future investigation of mitotic kinesin function in cancer cells. / Der vor kurzem entdeckte humane DREAM Komplex (für DP,RB ähnlich, E2F und MuvB Komplex) ist ein Chromatin bindender Pocket-Protein-Komplex involviert in Zellzyklusphase abhängiger Genregulation. DREAM besteht aus fünf Kernproteinen, die entweder zusammen mit dem Pocket-Protein p130 und dem Transkriptionsfaktor E2F4 die Genexpression reprimieren oder zusammen mit den Transkriptionsfaktoren B-MYB und FOXM1 die Genexpression fördern. GAS2L3 wurde vor kurzem als neues Zielgen des DREAM Komplexes identifiziert. Eine anschließende Charakterisierung in humanen Zelllinien offenbarte, dass GAS2L3 in der Lage ist, das F-Aktin und das Mikrotubuli Cytoskelett zu binden und zu vernetzen. Außerdem ist GAS2L3 speziell während der G2/M Phase exprimiert, spielt eine Rolle in der Cytokinese und ist wichtig für die genomische Integrität. Der erste Teil der Arbeit hatte zum Ziel zu ergründen in welcher Art und Weise DREAM GAS2L3 reguliert. Außerdem sollte das Verständnis der Rolle von GAS2L3 in der Cytokinese erweitert werden. Hierzu durchgeführte ChIP Analysen zeigten, dass sowohl der reprimierende als auch der aktivierende DREAM Komplex an den Promoter von GAS2L3 bindet. Experimente, in denen GAS2L3 durch RNA-Interferenz (RNAi) depletiert wurde, demonstrierten, dass GAS2L3 in der Cytokinese am Prozess der Einschnürung der Teilungsfurche beteiligt ist. Anschließende auf Immunfluoreszenzmikroskopie basierende Lokalisationsstudien zeigten, dass GAS2L3 an der mitotischen Spindel in der Mitose und am Midbody in der Cytokinese lokalisiert ist. Weiterführende Studien zeigten, dass die GAR Domäne von GAS2L3, eine mutmaßliche Mikrotubuli- Bindedomäne, für die Lokalisierung von GAS2L3 in der für die Abszission wichtigen Konstriktionszone verantwortlich ist. Dieses Ergebnis lässt vermuten, dass GAS2L3 eine Rolle in diesem Prozess spielt. Der DREAM Komplex ist bekannt dafür G2/M Genexpression zu fördern. G2/M Zielgene des Komplexes sind unter anderem mehrere mitotische Kinesine und mitotische Mikrotubuli-Bindeproteine. Bisher ist die Art und Weise und das Ausmaß der Regulierung dieser Proteingruppen durch DREAM aber nur ungenügend untersucht worden. Des Weiteren fehlt bisher eine umfassende Charakterisierung der Expression von mitotischen Kinesinen in Krebszellen. Deswegen befasste sich der zweite Teil der Arbeit mit der Charakterisierung der Regulation von mitotischen Kinesinen und Mikrotubuli-Bindeproteinen durch DREAM, untersuchte die Expression dieser beiden Proteingruppen in Krebszelllinien und evaluierte diese anschließend als potentielle Ziele für die Krebstherapie. Eine Kombination aus ChIP Analysen und RNAi Experimenten zeigte, dass DREAM eine zentrale Rolle in der Regulierung von mitotischen Kinesinen spielt. Expressions- analysen deckten auf, dass mitotische Kinesine in der Mehrheit der Krebszelllinien hochreguliert sind im Gegensatz zu den nicht entarteten Kontrollzelllinien. Schließlich wurde ein auf Lentiviren basierendes induzierbares shRNA System etabliert, welches mitotische Kinesine effektiv herunterregulieren konnte. Depletion ausgewählter mitotischer Kinesine führte zu Fehlern in der Cytokinese und hatte starke Auswirkungen auf das Wachstumsverhalten von mehreren Krebszelllinien. Aufgrund dieser Erkenntnisse wird das lentivirale System eine solide Ausgangsbasis für zukünftige Untersuchungen von mitotischen Kinesinen in Krebszellen bilden.
45

Zellzyklus abhängige Regulation der Telomererhaltung durch Telomerase oder ALT in immortalisierten Plattenepithelzellen des Ösophagus

Werder, Alexander von, January 2007 (has links)
Freiburg i. Br., Univ., Diss., 2008.
46

Untersuchungen zum Einfluss von Wundsekret auf Zellvermehrung, Chemoresistenzentwicklung, Zellzyklus und die Induktion einer Epithelial-mesenchymalen Transition in Tumorzellen von Kopf und Hals / Studies on the influence of wound fluid on cell proliferation, development of chemoresistance, cell cycle and the induction of an epithelial-mesenchymal transition in head and neck tumor cells

Eiter [verh. Seidl], Rafael January 2023 (has links) (PDF)
Tumore von Kopf und Hals gehen weiterhin mit einer schlechten Prognose einher. Im Rahmen einer operativen Therapie tritt Wundsekret (WS) aus, welches der Wundheilung dient. Dieses kann in Kontakt mit Tumorzellen bzw. Resttumor in der Wunde kommen. Im Rahmen der vorliegenden Arbeit wurde die Frage nach dem Einfluss von Wundsekret auf Zellvermehrung, Chemoresistenzentwicklung, den Zellzyklus und die Induktion einer Epithelial-mesenchymalen Transition (EMT) in Tumorzellen von Kopf und Hals gestellt. Hierfür wurde das WS von Tag1 und das WS von Tag 2 im Dotblot auf seine Zytokinzusammensetzung analysiert. Zwei Tumorzelllinien von Kopf und Hals, FaDu und HlaC78, wurden mit WSTag1 und WSTag2 behandelt und untersucht, welche Effekte das WS auf die Zellen hat. Verwendet wurden ein Proliferationsassay, eine Zellzyklusuntersuchung und Apoptosetestung mittels FACS, eine PCR, ein Spheroidmodell und die Lichtmikroskopie. Im WS wurden erhöhte Konzentrationen verschiedener Zytokine, insbesondere von IL-6, nachgewiesen. Gezeigt werden konnte eine gesteigerte Proliferationsrate der Tumorzellen unter WS-Behandlung, jedoch keine veränderte Verteilung der Zellzyklusphasen. In HlaC78-Zellen konnte eine vermehrte Vitalität nach Cisplatinbehandlung nachgewiesen werden. In beiden Tumorzelllinien fand sich eine vermehrte Exprimierung von Snail 1, Snail 2 und Vimentin. E-Cadherin wurde vermindert exprimiert. Twist und N-Cadherin wiesen keine Veränderungen auf. Es zeigte sich eine vermehrte Migration der Tumorzellen in die Umgebung. Die Zellen wiesen nach Behandlung mit WS vermehrt mesenchymale Zeichen auf. Es konnte kein Unterschied der Auswirkungen einer Behandlung mit WSTag1 im Vergleich zu einer Behandlung mit WSTag2 festgestellt werden. Insgesamt scheint WS in Tumorzellen von Kopf und Hals einen EMT-artigen Prozess in Gang zu setzen, also eine partial EMT (pEMT). Als mögliche Auslöser dieser Veränderungen kommen die im WS nachgewiesenen Zytokine und v. a. IL-6 in Frage. / Tumors of the head and neck continue to be associated with a poor prognosis. In the course of surgical therapy, wound fluid (WF) may come into contact with tumor cells or residual tumor in the wound. In this study, the influence of wound fluid on cell proliferation, development of chemoresistance, the cell cycle and the induction of an epithelial-mesenchymal transition (EMT) in tumor cells of the head and neck was investigated. Therefore, WF from day 1 and WF from day 2 were analyzed for their cytokine composition by Dotblot. The effects of WF from day 1 and WF from day 2 on two tumor cell lines of the head and neck, FaDu and HlaC78, were investigated using a proliferation assay, a cell cycle assay and an apoptosis assay via FACS, PCR, a spheroid model and light microscopy. Increased concentrations of various cytokines, especially IL-6, were detected in the WF. An increased proliferation rate of tumor cells under WF treatment could be shown. There was no alteration in the distribution of cell cycle phases, however. In HlaC78 cells an increased vitality after cisplatin treatment could be proven. Increased expression of Snail 1, Snail 2, and Vimentin was found in both tumor cell lines. The expression of E-cadherin was decreased. Twist and N-cadherin showed no changes. Increased migration of tumor cells to the surrounding area could be seen. Cells showed more mesenchymal signs after treatment with WF. No difference in the effects of treatment with WF from day 1 compared to treatment with WF from day 2 was observed. Overall, WF appears to initiate an EMT-like process in tumor cells of the head and neck, this is called partial EMT (pEMT). Possible inducers of these changes are the cytokines and in particular IL-6 that have been found in WF.
47

Functional genomic analysis of cell cycle progression in human tissue culture cells

Kittler, Ralf 19 October 2006 (has links) (PDF)
The eukaryotic cell cycle orchestrates the precise duplication and distribution of the genetic material, cytoplasm and membranes to daughter cells. In multicellular eukaryotes, cell cycle regulation also governs various organisatorial processes ranging from gametogenesis over multicellular development to tissue formation and repair. Consequently, defects in cell cycle regulation provoke a variety of human cancers. A global view of genes and pathways governing the human cell cycle would advance many research areas and may also deliver novel cancer targets. Therefore this work aimed on the genome-wide identification and systematic characterisation of genes required for cell cycle progression in human cells. I developed a highly specific and efficient RNA interference (RNAi) technology to realize the potential of RNAi for genome-wide screening of the genes essential for cell cycle progression in human tissue culture cells. This approach is based on the large-scale enzymatic digestion of long dsRNAs for the rapid and cost-efficient generation of libraries of highly complex pools of endoribonuclease-prepared siRNAs (esiRNAs). The analysis of the silencing efficiency and specificity of esiRNAs and siRNAs revealed that esiRNAs are as efficient for mRNA degradation as chemically synthesized siRNA designed with state-of-the-art design algorithms, while exhibiting a markedly reduced number of off-target effects. After demonstrating the effectiveness of this approach in a proof-of-concept study, I screened a genome-wide esiRNA library and used three assays to generate a quantitative and reproducible multi-parameter profile for the 1389 identified genes. The resulting phenotypic signatures were used to assign novel cell cycle functions to genes by combining hierarchical clustering, bioinformatics and proteomic data mining. This global perspective on gene functions in the human cell cycle presents a framework for the systematic documentation necessary for the understanding of cell cycle progression and its misregulation in diseases. The identification of novel genes with a role in human cell cycle progression is a starting point for an in-depth analysis of their specific functions, which requires the validation of the observed RNAi phenotype by genetic rescue, the study of the subcellular localisation and the identification of interaction partners of the expressed protein. One strategy to achieve these experimental goals is the expression of RNAi resistant and/or tagged transgenes. A major obstacle for transgenesis in mammalian tissue culture cells is the lack of efficient homologous recombination limiting the use of cultured mammalian cells as a real genetic system like yeast. I developed a technology circumventing this problem by expressing an orthologous gene from a closely related species including its regulatory sequences carried on a bacterial artificial chromosome (BAC). This technology allows physiological expression of the transgene, which cannot be achieved with conventional cDNA expression constructs. The use of the orthologous gene from a closely related species confers RNAi resistance to the transgene allowing the depletion of the endogenous gene by RNAi. Thus, this technology mimics homologous recombination by replacing an endogenous gene with a transgene while maintaining normal gene expression. In combination with recombineering strategies this technology is useful for RNAi rescue experiments, protein localisation and the identification of protein interaction partners in mammalian tissue culture cells. In summary, this thesis presents a major technical advance for large-scale functional genomic studies in mammalian tissue culture cells and provides novel insights into various aspects of cell cycle progression. (Die Druckexemplare enthalten jeweils eine CD-ROM als Anlagenteil: 217 MB: Movies, Rohdaten - Nutzung: Referat Informationsvermittlung der SLUB)
48

Functional genomic analysis of cell cycle progression in human tissue culture cells

Kittler, Ralf 18 October 2006 (has links)
The eukaryotic cell cycle orchestrates the precise duplication and distribution of the genetic material, cytoplasm and membranes to daughter cells. In multicellular eukaryotes, cell cycle regulation also governs various organisatorial processes ranging from gametogenesis over multicellular development to tissue formation and repair. Consequently, defects in cell cycle regulation provoke a variety of human cancers. A global view of genes and pathways governing the human cell cycle would advance many research areas and may also deliver novel cancer targets. Therefore this work aimed on the genome-wide identification and systematic characterisation of genes required for cell cycle progression in human cells. I developed a highly specific and efficient RNA interference (RNAi) technology to realize the potential of RNAi for genome-wide screening of the genes essential for cell cycle progression in human tissue culture cells. This approach is based on the large-scale enzymatic digestion of long dsRNAs for the rapid and cost-efficient generation of libraries of highly complex pools of endoribonuclease-prepared siRNAs (esiRNAs). The analysis of the silencing efficiency and specificity of esiRNAs and siRNAs revealed that esiRNAs are as efficient for mRNA degradation as chemically synthesized siRNA designed with state-of-the-art design algorithms, while exhibiting a markedly reduced number of off-target effects. After demonstrating the effectiveness of this approach in a proof-of-concept study, I screened a genome-wide esiRNA library and used three assays to generate a quantitative and reproducible multi-parameter profile for the 1389 identified genes. The resulting phenotypic signatures were used to assign novel cell cycle functions to genes by combining hierarchical clustering, bioinformatics and proteomic data mining. This global perspective on gene functions in the human cell cycle presents a framework for the systematic documentation necessary for the understanding of cell cycle progression and its misregulation in diseases. The identification of novel genes with a role in human cell cycle progression is a starting point for an in-depth analysis of their specific functions, which requires the validation of the observed RNAi phenotype by genetic rescue, the study of the subcellular localisation and the identification of interaction partners of the expressed protein. One strategy to achieve these experimental goals is the expression of RNAi resistant and/or tagged transgenes. A major obstacle for transgenesis in mammalian tissue culture cells is the lack of efficient homologous recombination limiting the use of cultured mammalian cells as a real genetic system like yeast. I developed a technology circumventing this problem by expressing an orthologous gene from a closely related species including its regulatory sequences carried on a bacterial artificial chromosome (BAC). This technology allows physiological expression of the transgene, which cannot be achieved with conventional cDNA expression constructs. The use of the orthologous gene from a closely related species confers RNAi resistance to the transgene allowing the depletion of the endogenous gene by RNAi. Thus, this technology mimics homologous recombination by replacing an endogenous gene with a transgene while maintaining normal gene expression. In combination with recombineering strategies this technology is useful for RNAi rescue experiments, protein localisation and the identification of protein interaction partners in mammalian tissue culture cells. In summary, this thesis presents a major technical advance for large-scale functional genomic studies in mammalian tissue culture cells and provides novel insights into various aspects of cell cycle progression. (Die Druckexemplare enthalten jeweils eine CD-ROM als Anlagenteil: 217 MB: Movies, Rohdaten - Nutzung: Referat Informationsvermittlung der SLUB)
49

Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks

Fischer, Martin, Grossmann, Patrick, Padi, Megha, DeCaprio, James A. 27 June 2016 (has links) (PDF)
Cell cycle (CC) and TP53 regulatory networks are frequently deregulated in cancer. While numerous genome-wide studies of TP53 and CC-regulated genes have been performed, significant variation between studies has made it difficult to assess regulation of any given gene of interest. To overcome the limitation of individual studies, we developed a meta-analysis approach to identify high confidence target genes that reflect their frequency of identification in independent datasets. Gene regulatory networks were generated by comparing differential expression of TP53 and CC-regulated genes with chromatin immunoprecipitation studies for TP53, RB1, E2F, DREAM, B-MYB, FOXM1 and MuvB. RNA-seq data from p21-null cells revealed that gene downregulation by TP53 generally requires p21 (CDKN1A). Genes downregulated by TP53 were also identified as CC genes bound by the DREAM complex. The transcription factors RB, E2F1 and E2F7 bind to a subset of DREAM target genes that function in G1/S of the CC while B-MYB, FOXM1 and MuvB control G2/M gene expression. Our approach yields high confidence ranked target gene maps for TP53, DREAM, MMB-FOXM1 and RB-E2F and enables prediction and distinction of CC regulation. A web-based atlas at www.targetgenereg.org enables assessing the regulation of any human gene of interest.
50

DNA-Strangbruchinduktion, Mikrokernbildung, Zellzyklusalteration und Apoptose durch Zahnwerkstoffe in humanen Lymphozyten / DNA strand breake induction, micronuclei formation, cell cycle alteration and apoptosis through dental materials in human lymphocytes

Zinnitsch, Sabrina January 2010 (has links) (PDF)
Die Zahnwerkstoffe HEMA (Hydroxyethylmethacrylat) und TEGDMA (Triethylenglycol-dimethacrylat) gehören zu den so genannten Restmonomeren. Sie liegen nach der Polymerisation noch ungebunden vor und werden anschließend freigesetzt. Sie gelangen in den Organismus über die Pulpa, die Gingiva oder über den Speichel und können biologisch wirksam werden. Bisherige Studien zeigen dosisabhängige mutagene Effekte in tierischen und menschlichen Zellen. HEMA und TEGDMA führen zu DNA-Strangbrüchen, Mikrokernbildung, Apoptosen und nehmen Einfluss auf den Zellzyklus (G1- und G2-Verzögerung). Ebenso wurden ein allergenes Potential und eine toxische Wirkung auf die Niere beschrieben. In dieser Arbeit wurden genotoxische Effekte von HEMA und TEGDMA in humanen Lymphozyten in Konzentrationsbereichen überprüft, wie sie auch im Körper auftreten können. Hierfür wurden die Lymphozyten 24 Stunden mit 10 µM, 100 µM und 1 mM HEMA und mit 1 µM, 10 µM und 100 µM TEGDMA behandelt. Mit dem Comet Assay werden DNA-Einzel- und Doppelstrangbrüche sowie die Reparatur zuvor induzierter DNA-Schäden erfasst. Durch die Modifikation des Comet Assay mit dem Fpg-Protein werden zusätzlich oxidativ geschädigte Basen mit hoher Sensitivität nachgewiesen. Der Mikrokerntest weist manifeste DNA-Schäden auf DNA-Ebene in Form von Mikrokernen nach. Daneben lassen sich auch andere zelluläre Reaktionen wie Mitosen und Apoptosen sowie die Proliferationsrate der Zellen bestimmen. Der Chromosomen-aberrationstest dient zum Nachweis von Veränderungen in der Struktur und/oder in der Anzahl von Chromosomen eines Genoms. Mit dem Schwesterchromatidaustauschtest werden ebenfalls Chromosomenmutationen nachgewiesen. Durchflusszytometrische Methoden werden zum Nachweis von Apoptosen und zur Zellzyklusanalyse eingesetzt. Im herkömmlichen Comet Assay zeigen HEMA und TEGDMA keine signifikante Wirkung auf die DNA (OTM < 2). Es kann aber gezeigt werden, dass die Behandlung mit Fpg zu einer Verdoppelung des OTM führt. Bei 1 mM HEMA und 100 µM TEGDMA wird dadurch das OTM auf > 2 angehoben. HEMA und TEGDMA wirken sich nicht auf die Mikrokernbildung aus, jedoch wird durch den Mikrokerntest ab 1 mM HEMA und 100 µM TEGDMA eine Einflussnahme auf die Proliferation gezeigt. Die Rate früher (< 10%) und später Apoptosen Apoptosen (< 4 %) bleibt im Durchschnitt weitgehend konstant. Eine Ausnahme sind 1 mM HEMA, die die frühen Apoptosen auf > 10 % anheben. Eine Einflussnahme auf den Zellzyklus, in Form einer Verzögerung, üben 1 mM HEMA in der S-Phase und 100 µM TEGDMA in der G1-Phase aus. In den Chromosomentests werden einerseits ein dosisabhängiger Anstieg der Aberrationen und andererseits vermehrte Chromatidaustausche beobachtet. In dieser Arbeit wird die Verbindung von HEMA und TEGDMA zu oxidativen Stress im Comet Assay mit Fpg gezeigt. Da die tatsächlich in vivo erreichbaren Konzentrationen unter 100 µM liegen, ist zu schließen, dass HEMA und TEGDMA in diesem niedrigen Konzentrationsbereich keine nachteiligen Effekte ausüben, denn nur die hohen Konzentrationen (1 mM HEMA, 100 µM TEGDMA) sind in der Lage eine genotoxische Wirkung zu entfalten. Jedoch kann das Auslösen von Mutationen mit dem Chromosomenaberrationstest und Schwesterchromatidaustauschtest bestätigt werden. Um das Schädigungsprofil dieser häufig eingesetzten Zahnwerkstoffe detaillierter beschreiben zu können, müssen Untersuchungen auf Chromatidebene intensiviert werden. / The dental materials HEMA (2-hydroxyethylmethacrylate) and TEGDMA (triethylengylcol-dimethacrylate) belong to the so-called rest monomers. After the polymerisation they are still unbound and can be released afterwards. They reach the organism through the pulp, the gingiva or through the saliva and can become biological effective. Present studies indicate dose-dependent mutagene effects in animal and human cells. HEMA and TEGDMA induce DNA strand breaks, micronuclei formation, apoptosis and have influence on the cell cycle (G1 and G2 delay). Also an allergic potential and a toxic effect on kidneys were described. In this study genotoxic effects were checked by HEMA and TEGDMA in human lymphocytes in concentration areas as they can also appear in the body. The lymphocytes were treated 24 hours with 10 µM, 100 µM and 1 mM HEMA and with 1 µM, 10 µM and 100 µM TEGDMA. With the comet assay DNA single and double strand breaks as well as the repair before induced DNA damage are grasped. By the modification of the comet assay with the Fpg protein oxidative injured bases are proved in addition with high sensitivity. The micronucleus test proves manifest DNA damages at DNA level in the form of micronuclei. Beside other cellular reactions like mitosis and apoptosis as well as the proliferation of the cell can also be determined. The chromosomal aberration test serves for the proof of changes in the structure and/or in the number of chromosomes of a genome. With the sister chromatid exchange test chromosomal mutations are also proved. Flow cytometric methods are used to the proof by apoptosis and to the cell cycle analysis. In the conventional comet assay HEMA and TEGDMA indicate no significant effect at the DNA (OTM < 2). However, it can be shown that the treatment with Fpg leads to a duplication of the OTM. At 1 mM HEMA and 100 µM TEGDMA the OTM is thereby raised on >2. HEMA and TEGDMA do not affect the induction of micronuclei, however the micronucleus test indicate a intervention on the proliferation from 1 mM HEMA and 100 µM TEGDMA. The rate earlier (< 10 %) and late apoptosis (< 4 %) remains widely steady on average. An exception is 1 mM HEMA which raise the early apoptosis on > 10 %. 1mM HEMA have an influence on the cell cycle, in form of a delay, in the S phase and 100 µM TEGDMA in the G1 phase. In the chromosomal tests are observed dose-dependent increase of the aberrations on the one hand and increased chromatid exchanges on the other hand. In this study the connection is shown by HEMA and TEGDMA to oxidative stress in the comet assay with Fpg. Because the really in vivo available concentration lie under 100 µM, is to be closed that HEMA and TEGDMA exert no disadvantageous effects in this low concentration area, because only the high concentrations (1 mM HEMA and 100 µM TEGDMA) are able to unfold a genotoxic effect. However, the release of mutations can be confirmed by the chromosomal aberration test and the sister chromatid exchange test. To be able to describe the damage profile of these often used dental materials more detailed investigations on chromatid level must be intensified.

Page generated in 0.046 seconds