• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 40
  • 13
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 146
  • 91
  • 47
  • 33
  • 23
  • 17
  • 17
  • 15
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Imported infections’ importance : global change driving Dengue dynamics / Vikten av importerade infektioner : kan globala förändringar förklara Dengue utbrott?

Quam, Mikkel B. January 2016 (has links)
Background Dengue is a significant problem of international health concern. According to the World Health Organization in 2012, globally, dengue is “the most important mosquito borne viral disease” with incidence 30 higher than it had been 50 years ago. While most of the burden of disease associated with dengue is located in areas with a tropical and sub-tropical climate, increasing evidence suggests temperate areas are also at risk. Considering the recent introduction of relevant mosquito vectors into Southern Europe, and increasing numbers of imported dengue via travelers, Europe and other temperate areas may be increasingly at risk for dengue emergence, establishment and local transmission in the foreseeable future. Methods Recent dengue emergence in Madeira and reemergence in Tokyo underline the hypothesis that passenger air-travel can be an important conduit for the importation of vector-borne disease leading to emergence in naïve areas climatically suitable for dengue transmission, including parts of Europe. Combining information on travel with virus genetic similarity was useful in discerning likely pathways of for the importation of infections. Generalizing information learned from outbreaks in Tokyo and Madeira with global epidemic intelligence, global travel networks, and climate change projections, leads to more refined understanding of the magnitude of dengue infectious imported into temperate areas and these virus introduction events’ potential implications for seeding epidemics in the 21st century. Results While compared to total travel, imported dengue events and epidemics of dengue outside the tropics are rare, our combined evidence and modeled estimations suggest strongly that epidemic dengue emergence in temperate areas is possible and will continue to increase. We found that global change dynamics including warming temperatures in the much of the northern hemisphere and increasing passenger interconnectivity between areas endemic for dengue and dengue free areas are key mechanisms partly explaining these unprecedented epidemiological transitions. Conclusion While we calibrated our models on information known about dengue, many elements of the methods and conclusions may increase understanding of the potentially global implications for imported infections of other climate-sensitive infectious diseases’ that may have similar parameters. During 2016 and the years to come, techniques developed in this doctoral research will contribute to models used in risk analysis for vector-borne diseases of interest, including the increasing important potential for imported Chikungunya and Zika viruses into a variety of unexposed areas.
132

Aplicações de bactérias redutoras de ferro. / Applications of iron-bearing bacteria.

Ortiz, Júlia Helena 12 June 2018 (has links)
O ferro é um importante elemento em reações catalíticas no meio ambiente, pois possui a capacidade de ser reduzido ou oxidado. Duas espécies de ferro solúvel podem estar presentes em amostras ambientais, o Fe (II) e o Fe (III). Métodos analíticos capazes de diferenciar e quantificar estas duas espécies de ferro são muito importantes para a compreensão dos processos metabólicos dos diversos microrganismos, e também para entender a atuação destes microrganismos na remobilização do coagulante utilizado em estações de tratamento de esgotos (ETEs), nas quais é possível utilizar como coagulante o FeCl3. Porém não há trabalhos publicados que recuperam o ferro coagulado utilizando bactérias redutoras de ferro. Os objetivos deste trabalho são: 1) avaliar o método colorimétrico de fenantrolina para quantificação de Fe (II) e os principais interferentes nessas análises; e 2) avaliar o potencial do Fe (II) gerado via metabolismo das bactérias redutoras de ferro como coagulante de matéria orgânica e inorgânica de águas residuárias. Os resultados para o método colorimétrico de fenantrolina são confiáveis somente para leituras de amostras que contenham Fe (II), mas não diferencia e quantifica corretamente espécies de Fe (III) em todos os valores de pH. A separação das diferentes espécies de ferro foi feita utilizando membrana de acetato de celulose com porosidade de 0,2 m e ajustando o valor do pH para valores entre 4 e 5. Para obtenção das concentrações de Fe (II) e Fe (III), é necessário realizar a leitura em amostras filtradas e não filtradas, pois o Fe (II) passa pela membrana e o Fe (III) fica retido. Desta forma, é possível realizar a distinção das espécies de ferro, e em seguida realizar a quantificação com testes colorimétricos, seja em campo ou em laboratório. A diferenciação das espécies de ferro se mostrou importante para quantificar corretamente o Fe (III) e o Fe (II) durante o tratamento de águas residuárias utilizando Fe (III) como coagulante na forma de FeCl3. Na comparação com a recuperação ácida, a biológica se mostrou mais eficiente por não apresentar metais pesados remobilizados na fração líquida, recuperando 58% do ferro quando adicionado o glicerol como fonte de carbono. Durante a remobilização do ferro houve a produção do metano, gás de interesse econômico. A escolha do coagulante e da concentração foi determinada pela remoção da turbidez, sendo o melhor coagulante para água residuária do CRUSP o FeCl3 na concentração de 60 mg/ L de Fe, pois removeu 99% da turbidez, 98% do fosfato, 85% dos carboidratos e 100% de proteínas presentes na água residuária. Aplicando-se o coagulante remobilizado (400 mg/L), foi possível remover 85% da turbidez. O ferro recuperado servirá novamente como coagulante, favorecendo a redução dos custos com o tratamento de água residuária. / Iron is an important element in catalytical action in the environment as it has an ability to be filtered or oxidized. Soluble iron species may be present in environmental samples, Fe (II) and Fe (III). Analytical methods capable of differentiating and quantifying these two iron species are very important for the remobilization of coagulation in sewage treatment plants (ETEs), in which FeCl3 can be used as a coagulant. It is not a job that recovers coagulated iron with iron reducing units. The objectives of this work are: 1) to evaluate the colorimetric method of phenanthroline for quantification of Fe (II) and the main interferents in these analyzes; and 2) to evaluate the potential of Fe (II) through the metabolism of iron-reducing bacteria as a coagulant of organic and inorganic wastewater. The results for the colorimetric method of phenanthroline are only for the readings of samples containing Fe (II), but do not differentiate and quantify the Fe (III) species at all pH values. The separation of the fish fiber species was left to the cellulose acetate test with the porosity of 0.2 m and adjusting the pH value to values between 4 and 5. For the concentration of Fe (II) and Fe (III), it is necessary to read in filtered and unfiltered samples, as Fe (II) passes through the membrane and Fe (III) is retained. In this way, it is possible to perform an analysis of the iron species, and then perform quantification with colorimetric tests, either in the field or in the laboratory. Differentiation of iron species has become important in correctly quantifying Fe (III) and Fe (II) during wastewater treatment using Fe (III) as a coagulant in the form of FeCl3. In comparison with an acid replica, a biological recovery is done through large amounts of remobilized in the liquid fraction, recovering 58% of the iron when the glycerol as carbon source. During the remobilization of the iron there was a production of methane, gas of economic interest. The choice of the coagulant and the capacity was determined by the removal of the turbidity, being the best coagulant for the residual water of the CRUSP the FeCl3 in the concentration of 60 mg/L of Fe, since it removed 99% of the turbidity, 98% of the phosphate, 85% of carbohydrates and 100% of proteins present in the wastewater. Applying the remobilized coagulant (400 mg/L), it was 85% turbidity remover. The recovered iron will again serve as a coagulant, favoring the reduction of costs with the treatment of wastewater.
133

Detection of SARS-CoV-2 antibodies in febrile patients from an endemic region of dengue and chikungunya in Peru

Tarazona-Castro, Yordi, Troyes-Rivera, Lucinda, Martins-Luna, Johanna, Cabellos-Altamirano, Felipe, Aguilar-Luis, Miguel Angel, Carrillo-Ng, Hugo, Del Valle, Luis J., Kym, Sungmin, Miranda-Maravi, Sebastian, Silva-Caso, Wilmer, Levy-Blitchtein, Saul, del Valle-Mendoza, Juana 01 April 2022 (has links)
Introduction The rapid expansion of the novel SARS-CoV-2 virus has raised serious public health concerns due to the possibility of misdiagnosis in regions where arboviral diseases are endemic. We performed the first study in northern Peru to describe the detection of SARSCoV-2 IgM antibodies in febrile patients with a suspected diagnosis of dengue and chikungunya fever. Materials and methods A consecutive cross-sectional study was performed in febrile patients attending primary healthcare centers from April 2020 through March 2021. Patients enrolled underwent serum sample collection for the molecular and serological detection of DENV and CHIKV. Also, serological detection of IgM antibodies against SARS-CoV-2 was performed. Results 464 patients were included during the study period, of which (40.51%) were positive for one pathogen, meanwhile (6.90%) presented co-infections between 2 or more pathogens. The majority of patients with monoinfections were positive for SARS-CoV-2 IgM with (73.40%), followed by DENV 18.09% and CHIKV (8.51%). The most frequent co-infection was DENV + SARS-CoV-2 with (65.63%), followed by DENV + CHIKV and DENV + CHIKV + SARSCoV-2, both with (12.50%). The presence of polyarthralgias in hands (43.75%, p<0.01) and feet (31.25%, p = 0.05) were more frequently reported in patients with CHIKV monoinfection. Also, conjunctivitis was more common in patients positive for SARS-CoV-2 IgM (11.45%, p<0.01). The rest of the symptoms were similar among all the study groups. Conclusion SARS-CoV-2 IgM antibodies were frequently detected in acute sera from febrile patients with a clinical suspicion of arboviral disease. The presence of polyarthralgias in hands and feet may be suggestive of CHIKV infection. These results reaffirm the need to consider SARS-CoV-2 infection as a main differential diagnosis of acute febrile illness in arboviruses endemic areas, as well as to consider co-infections between these pathogens. Copyright: / Revisión por pares
134

Design and development of technologies for decentralized diagnostic testing

Arumugam, Siddarth January 2022 (has links)
Over the past decade, and accelerated due to the COVID-19 pandemic, there has been increasing adoption of decentralized diagnostic testing, where the testing is brought closer to the patient. This trend has largely been fueled by the development of more accurate diagnostic tools and faster and more reliable data connectivity. Decentralized testing has been shown to greatly reduce turnaround times while increasing accessibility to users in remote regions. However, there are challenges that limit its widespread adoption. In this dissertation, we detail the development of tools and technologies to overcome these barriers and expedite the shift towards decentralized diagnostic testing. First, we demonstrate the ability to develop point-of-care (POC) diagnostic tests with performance that rivals that of traditional lab-based methods. We developed a rapid, multiplexed, microfluidic serological test for Lyme disease, a tick-borne disease caused by the Borrelia burgdorferi bacterium. The recommended testing, the standard 2-tiered (STT) approach, is not sensitive for early-stage infections, is labor-intensive, has long turnaround times, and requires the use of two immunoassays (enzyme-linked immunosorbent assay (ELISA) and the Western Blot). We developed a standalone multiplexed sandwich ELISA assay and adapted it to the mChip microfluidic platform. We validated the assay on a rigorously characterized panel of human serum samples and demonstrated that our approach outperforms the STT algorithm on sensitivity while matching its specificity. The form factor of this technology is amenable to use in physician’s offices and urgent care clinics. We also showed exploratory work towards adapting the mChip platform for diagnosis of Zika disease, a mosquito-borne disease caused by the Zika virus, and acute kidney injury, a syndrome characterized by loss of kidney excretory function. Next, we worked on increasing the adoption of rapid diagnostic tests for self- and partner-testing designed to be used in at-home settings. We developed a smartphone application to be used alongside the INSTI Multiplex test for detecting HIV and syphilis infections. The application was designed to provide users with i) instructions on running the test, ii) an automated deep-learning-based image interpretation algorithm to interpret the rapid test results from a smartphone image, iii) a way to save test results and display/share them, and iv) resources for follow-up care. We adopted a user-centered, iterative design process where we worked with a cohort of study participants composed of men who have sex with men and transgender women at high risk for contracting sexually transmitted infections. We then field tested the application with 48 participants over a duration of three months and found high acceptability for the application, both in terms of functionality and helpfulness. Finally, we sought to address a key limitation with deep-learning-based image classification techniques, specifically, the requirement for large numbers of annotated images for training. We developed a deep-learning image interpretation algorithm that could be quickly adapted to new rapid test kits using only a fraction of the images that would otherwise be needed for training the model. The interpretation algorithm followed a three-step, modular process. First, the rapid test kit and the membrane were extracted from the smartphone image. Second, the constituent zones were cropped from the extracted membrane. Finally, a classifier detected the presence or absence of a line in the individual zones. Fast adaptation was demonstrated by adapting a base model, trained using images of a single COVID-19 rapid test kit, to four different rapid test kits, each with different form factors, using few-shot domain adaptation. After training with 20 or fewer images, the classification accuracies of all the adapted models were > 95%. This approach can provide a digital health platform for improved pandemic preparedness and enable quality assurance and linkage to care for consumers operating new LFAs in widespread decentralized settings. Together, these methods provide a suite of tools that could expedite the shift towards decentralized, POC testing.
135

Genome-scaled molecular clock studies of invasive mosquitoes and other organisms of societal relevance

Zadra, Nicola 21 April 2022 (has links)
Molecular dating (or molecular clock) is a powerful technique that uses the mutation rate of biomolecules to estimate divergence times among organisms. In the last two decades, the theory behind the molecular clock has been intensively developed, and it is now possible to employ sophisticated evolutionary models on genome-scaled datasets in a Bayesian framework. The molecular clock has been successfully applied to virtually all types of organisms and molecules to estimate timing of speciation, timing of gene duplications, and generation times: this knowledge allows contextualizing past and present events in the light of (paleo)ecological scenarios. Molecular clock studies are routinely used in evolutionary and ecological studies, but their use in applied fields such as agricultural and medical entomology is still scarce in particular because of a paucity of genome data. Genome-scaled clocks have been successfully applied, for example, to various model organisms such as Anopheles and Drosophila, as well as to invasive mosquitoes Aedes aegypti and Aedes albopictus. Many other invasive pests are emerging worldwide aided by global trade, increased connectivity among countries, lack of prevention, and flawed invasive species management. Among them, there is Aedes koreicus and Aedes japonicus, two invasive mosquito species which are monitored for public health concerns because of their harboured human pathogenic viruses. For these, as well as for other insects of societal relevance, such as the parasitoid Trissolcus japonicus, there is a paucity of gene markers and no genome data for large scale molecular clock studies. Invasive pests are typically studied using microevolutionary approaches that tackle events at an intraspecific level: these approaches provide important information for the pest management, for example, by revealing invasion routes and insecticide resistances. Approaches that tackle the deep-time evolution of the pest, such as the molecular clock, are instead less used in pest science. Many important traits associated with invasiveness have evolved by speciation over a long time frame: the molecular clock can reveal the paleo-ecological conditions that favoured these traits helping a better understanding of pest biology. Molecular clock, when coupled with phylogenomics, can further identify genes and patterns that characterize the pest: this knowledge can be used to enhance management practices. Although this is a data-driven thesis, its major aim is to provide new results to demonstrate the utility of the molecular clock in pest science. This has been done by systematically apply the molecular clock to various neglected organisms of medical and agricultural relevance. To this aim, I generated new genome data and/or assembled the largest genome-scaled data to date. I studied the molecular clock in mosquitoes, focusing on the Aedini radiation (Chapter 2) and identified a strong incongruence between the mitochondrial and nuclear phylogeny for what concerns their molecular clock. This result highlighted the importance of employing genome scaled data for these species to exclude stochastic effects due to poor/inaccurate sampling in clock studies. To tackle the absence of data, I further assembled the whole mitogenome of emerging invasive species Aedes koreicus and Aedes japonicus with the aim of producing useful data for molecular typing and of inferring divergence estimates using whole mitogenomes (Chapter 3). Dated phylogenies point toward more recent diversification of Aedini and Culicini compared to estimates from previous works, addressing the issue of taxon sampling sensitivity in dated phylogeny. Although it is possible to perform molecular clock studies on single/few gene markers, the current trend is to couple this methodology with genome-scaled datasets to reduce the stochastic effect of using few genes. For this reason, I sequenced the draft genome of A. koreicus and A. japonicus (Chapter 4). The assemblies were extremely fragmented, highlighting the problem of sequencing large genomes using short reads. The assemblies provided, however enough information for genome skimming allowing extraction of BUSCO genes for downstream analyses, whole mitogenome assemblies (used in Chapter 3), and characterisation of the associated metagenome. These data need to be integrated by long reads; it provides, however a first framework to investigate the genome evolution of these species. I further sequenced and assembled the genome of Trissolcus japonicus, the parasitoid wasp of the invasive pest Halyomorpha halys. To elucidate its divergence, estimate and define an intraspecific typing system to differentiate strains for biocontrol strategies, I reconstructed the mitochondrial genomes of two populations: the mitogenomes were surprisingly identical, suggesting that they belong to the same de facto population. I further provide a detailed clock investigation of Zika, a virus harboured and transmitted by some Aedes species (Chapter 5). Using the largest set of genomes to date, I could set the origin of ZIKV in the middle age and its first diversification in the mid-19th century. From a methodological point of view, the clocking of this virus highlighted the importance of checking for recombination and for cell-passages to obtain correct divergence estimates. I finally show my contributions to molecular clock studies of three other invasive species (Chapter 6): I helped disentangle the divergence times of Bactrocera, a genus of invasive fruit files pest of agriculture; I contributed in performing a phylogenomics study of opsin genes in Diptera; I used chloroplast and nuclear genome data to reconstruct the divergences of the invasive reed Arundo. In the various Chapters of my thesis, I highlighted the limits and the problems of current molecular clock methodologies and identified the best practices for different types of organisms in order to develop a cross-discipline understanding of the molecular clock techniques. The various results presented in this thesis further demonstrate the utility of the molecular clock approach in pest studies.
136

Population Dynamics and Community Structure of Mosquitoes (Diptera: Culicidae) Recorded in Denton, Texas from 2005 to 2015

Hambrick, Bethany Lynn 05 1900 (has links)
A population survey was conducted on the mosquito species recorded in Denton, Texas for the years of 2005 to 2015. Data used in this project were obtained from an ongoing, long-term surveillance program led by the City of Denton and conducted through the University of North Texas. Research focused on the population dynamics and community structure of mosquitoes collected within urban areas of Denton, Texas in relation to certain environmental variables. A total of 80,837 female mosquitoes were captured and represented 38 species found under the following genera: Aedes, Anopheles, Coquillettidia, Culex, Culiseta, Mansonia, Orthopodomyia, Psorophora, Toxorhynchites, and Uranotaenia. Culex quinquefasciatus was the most abundant species followed by Aedes vexans. Seasonal patterns of the most abundant species revealed high variability throughout the study. Container breeders were most abundant in August and those that breed in floodwaters were most abundant in the months of May and September. Samples were tested for arbovirus presence through the Texas Department of State Health Services in Austin, Texas and multiple pools tested positive for West Nile virus throughout the study. Stepwise multiple regression and Spearman's rank correlation analyses were performed to examine the relationship between the mosquito community and environmental variables. Data revealed that temperature, precipitation, and dew point were the most important variables influencing the mosquito population in the City of Denton.
137

Pluripotent Stem Cell-Based Models: A Peephole into Virus Infections during Early Pregnancy

Claus, Claudia, Jung, Matthias, Hübschen, Judith M. 17 April 2023 (has links)
The rubella virus (RV) was the first virus shown to be teratogenic in humans. The wealth of data on the clinical symptoms associated with congenital rubella syndrome is in stark contrast to an incomplete understanding of the forces leading to the teratogenic alterations in humans. This applies not only to RV, but also to congenital viral infections in general and includes (1) the mode of vertical transmission, even at early gestation, (2) the possible involvement of inflammation as a consequence of an activated innate immune response, and (3) the underlying molecular and cellular alterations. With the progress made in the development of pluripotent stem cell-based models including organoids and embryoids, it is now possible to assess congenital virus infections on a mechanistic level. Moreover, antiviral treatment options can be validated, and newly emerging viruses with a potential impact on human embryonal development, such as that recently reflected by the Zika virus (ZIKV), can be characterized. Here, we discuss human cytomegalovirus (HCMV) and ZIKV in comparison to RV as viruses with well-known congenital pathologies and highlight their analysis on current models for the early phase of human development. This includes the implications of their genetic variability and, as such, virus strain-specific properties for their use as archetype models for congenital virus infections. In this review, we will discuss the use of induced pluripotent stem cells (iPSC) and derived organoid systems for the study of congenital virus infections with a focus on their prominent aetiologies, HCMV, ZIKV, and RV. Their assessment on these models will provide valuable information on how human development is impaired by virus infections; it will also add new insights into the normal progression of human development through the analysis of developmental pathways in the context of virus-induced alterations. These are exciting perspectives for both developmental biology and congenital virology.
138

Developing a Guide and Template to Aid the Preparation of Mosquito Surveillance Plans in Ohio

Flynn, Rebecca Anne 16 July 2018 (has links)
No description available.
139

Factors influencing arbovirus transmission: vector competence and the effects of virus infection on repellent response, oxidative stress, and glutathione-S-transferase activity

Chan, Kevin Ki Fai 31 January 2020 (has links)
Zika (ZIKV), La Crosse (LACV), and Cache Valley (CVV) viruses are mosquito-vectored diseases that cause significant morbidity and mortality in humans and animals. Transmission of these viruses are dependent on numerous factors including vector competence and the effects of mosquito-virus interactions. We conducted vector competence studies of local Aedes and Culex mosquitoes for ZIKV and CVV, and found that all Aedes mosquitoes were competent for CVV and only Aedes albopictus and Aedes japonicus were competent for ZIKV. Vector competence for CVV was dose-dependent, where mosquitoes orally infected with high titers developed higher transmission rates. We also found that vector competence for ZIKV was limited by midgut and salivary gland barriers. Second, we looked at the effects of LACV and ZIKV infection on repellent response in Aedes mosquitoes and found that infected mosquitoes were refractory to low concentrations of DEET, picaridin, and PMD. Increasing concentrations of the repellents to ≥10% was able to increase percent protection (%p) against infected and uninfected mosquitoes. Lastly, we determined the effects of ZIKV and LACV infection on oxidative stress and glutathione-S-transferase (GST) activity in Aedes albopictus. Virus infection had no effect on oxidative stress, but GST activity was significantly different for mosquitoes 3-days post-exposure. We found that oxidative stress levels and GST activity had an inverse relationship for infected and uninfected mosquitoes, where oxidative stress decreased and GST activity increased over the 10-day test period. This indicates that GSTs may aid in controlling byproducts of oxidative stress. The results from this entire study identified competent vectors for emerging arboviruses and demonstrated the behavioral and physiological effects of virus infection in the mosquito vector. / Doctor of Philosophy / Zika (ZIKV), La Crosse (LACV), and Cache Valley (CVV) viruses are transmitted by mosquitoes and can make humans and animals very sick. There are many biological factors that determine if a mosquito can transmit a virus and these viruses can change the biology of a mosquito. We conducted laboratory studies to see if Aedes and Culex mosquitoes can transmit ZIKV and CVV. We found that all Aedes mosquitoes were able to transmit CVV and only the Asian tiger mosquito and Asian rock pool mosquito were able to transmit ZIKV. Mosquitoes infected with high amounts of CVV developed higher transmission rates. We also found that transmission of ZIKV was limited by barriers in the mosquito midgut and salivary glands. Second, we looked at the effects of LACV and ZIKV infection on how Aedes mosquitoes respond to repellents and found that infected mosquitoes were less sensitive to low concentrations of DEET, picaridin, and PMD. Increasing concentrations of the repellents to 10% or higher was able to provide adequate protection against infected and uninfected mosquitoes. Lastly, we determined the effects of ZIKV and LACV infection on oxidative stress and glutathione-S-transferase (GST) activity in the Asian tiger mosquito. Virus infection did not change oxidative stress, but GST activity was higher in infected mosquitoes tested after 3 days after infection. We found that oxidative stress decreased and GST activity increased over the 10-day test period. This indicates that GSTs may help control damaging products from oxidative stress. The results from this entire study identified what mosquitoes were able to transmit emerging mosquito-borne viruses and demonstrated the biological effects of virus infection in the mosquitoes.
140

Modélisation de l'environnement d'un moustique vecteur de maladies : l'exemple d'Aedes aegypti à Delhi (Inde) et Bangkok (Thaïlande) / Modelisation of the environment of a diseases vector mosquito : the example of Aedes aegypti in Delhi (India) and Bangkok (Thailand)

Misslin, Renaud 12 September 2017 (has links)
Aedes aegypti est le vecteur principal de la dengue et du virus Zika. La surveillance et le contrôle vectoriels constituent des armes de première ligne pour lutter contre les arboviroses transmises par ce moustique. Dans ce cadre, cette thèse propose un modèle conceptuel (MODE) qui permet de reproduire in silico l'environnement dynamique d'Aedes aegypti aux échelles auxquelles sont organisées (échelle de la ville - MODE-macro) et menées (échelle du quartier -- MODE-micro) les campagnes de lutte anti-vectorielles. L'environnement ainsi généré peut (1) être intégré à un modèle à base d'agents qui permet alors de simuler le système pathogène complexe de la dengue ou du Zika (environnement - vecteur - hôte - virus) et (2) être utilisé pour cartographier l'aléa environnemental du risque vectoriel dans la ville. Le modèle conceptuel MODE repose sur une approche phénoménologique transposable dans le temps et dans l'espace : il peut être appliqué dans différents contextes urbains, à différentes périodes et à différentes échelles. Afin de garantir sa généricité spatio-temporelle, les modèles informatiques MODE-micro (échelle du quartier) et MODE-macro (échelle de la ville) ont été implémentés dans le but de générer des environnements dynamiques à partir de données libres ou aisément accessibles. Dans ce travail, les potentialités de MODE ont été évaluées à Delhi (Inde) et Bangkok (Thaïlande). Les connaissances issues de l'étude des relations dynamiques, multifactorielles et non-linéaires entre l’environnement et le vecteur devraient permettre d’améliorer les stratégies de surveillance et de contrôle. / Aedes aegypti is the main vector of dengue and Zika virus. Surveillance and vector control are frontline weapons in the battle against arboviruses transmitted by this mosquito. In this framework, the following thesis introduces a conceptual model (MODE) which can be used to recreate in silico the dynamical environment of Aedes aegypti at scales that match the ones at which vector control campaigns are organised (city scale - MODE-macro) and performed (neighbourhood scale - MODE-micro). The environment thus generated can be integrated with an agent-based model to simulate dengue or Zika complex pathogenic systems (environment - vector - host - virus) and can be used to map the environmental hazard of the vectorial risk in a city. The conceptual model MODE is based on a phenomenological approach that is transferable in time and space : it can be applied in different urban contexts, at different periods of time and at different scales. In order to ensure their spatio-temporal genericity, the computer models MODE-micro (neighbourhood scale) and MODE-macro (city scale) have been implemented for the purpose of generating dynamical environments using open or easily accessible data. In this thesis, MODE's potentials were assessed in Delhi (India), and Bangkok (Thailand).Knowledge resulting from the study of the dynamic, multifactorial and non-linear relationships between the environment and the vector should lead to the improvement of vector surveillance and control strategies.

Page generated in 0.0535 seconds