• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 13
  • 9
  • 1
  • Tagged with
  • 35
  • 31
  • 22
  • 20
  • 19
  • 19
  • 19
  • 12
  • 10
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Untersuchung zur Fixierung von Knorpelgewebe mittels laserinduzierter Koagulation: Untersuchung zur Fixierung von Knorpelgewebe mittelslaserinduzierter Koagulation: Investigation for the fixation of articular cartilage tissue using laser-induced coagulation

Hoffmann, Philipp 15 May 2012 (has links)
Philipp Hoffmann Untersuchung zur Fixierung von Knorpelgewebe mittels laserinduzierter Koagulation Aus der Chirurgischen Tierklinik der Veterinärmedizinische Fakultät der Universität Leipzig, angefertigt im Forschungszentrum für Medizintechnik und Biotechnologie GmbH, Bad Langensalza Eingereicht im Januar 2012 97 Seiten, 59 Abbildungen, 9 Tabellen, 318 Literaturangaben 10 Seiten Anhang Schlüsselwörter: Laser, Löten, Knorpelgewebe, Zugfestigkeit, thermische Schäden Gelenkerkrankungen zählen zu den häufigsten Ursachen von Bewegungseinschränkungen in der Human- und Veterinärmedizin. Neben der konservativen Therapie gibt es zahlreiche chirurgische Therapieansätze, unter denen die verschiedenen Verfahren der autologen Chondrozytenimplantation (ACI) vermehrt in den Fokus gerückt sind. Als unbefriedigend stellt sich aktuell die Fixierung der Implantate bzw. Transplantate dar. Ziel der vorliegenden Arbeit war es, zunächst in vitro, unter Nutzung von Gelenkknorpelgewebe aus Kadavermaterial (Schwein, Rind), ein Verfahren einzuarbeiten, mit dem es möglich ist, durch laserinduzierte Koagulation eines Lötmittels eine Verbindung zwischen zwei Knorpelfragmenten bei einer möglichst geringen Gewebeschädigung herzustellen. Als Lötmittel war ein geeignetes Chromophoren-Protein-Gemisch (CPG) herzustellen, welches so auf die Wellenlänge des zur Verfügung stehenden Lasers angepasst wurde, dass die Herstellung von Lötverbindungen möglich war. Die mechanische Festigkeit der Lötverbindungen wurde in verschiedenen Studien zur Optimierung der Lötmittelzusammensetzung und der Lasereinstellungen durch die Bestimmung der Zugkraft geprüft. Ebenso wurden Untersuchungen zum Auftreten thermischer Schäden am Gewebe durch das lasergestützte Löten vorgenommen. Ausgehend von der Untersuchung der Absorptionseigenschaften verschiedener Chromophore und Proteine wurden verschiedene, auf die Wellenlänge des Lasers (810 nm Diodenlaser) abgestimmte, CPG unter Verwendung des Farbstoffes Indocyaningrün (ICG), welcher in dem in der Humanmedizin zugelassenen Diagnostikum ICG-Pulsion® (PULSION Medical Systems AG, München) enthalten ist, und bovinem Serumalbumin (BSA) hergestellt. Knorpelgewebe absorbiert die Strahlung des Diodenlasers (810 nm) kaum (μa ≈ 0 bis 0,02 cm-1). Das Lötmittel (ICG + BSA), dessen Absorptionsmaximum mit 790 nm nah an der Emissionswellenlänge des Lasers liegt, absorbiert hingegen in diesem Wellenlängenbereich gut. Dadurch kann eine direkte Schädigung des Knorpelgewebes durch die Absorption der Laserstrahlung vermieden werden. In den Studien wurden drei Lötmittel mit unterschiedlichen Anteilen an ICG (1 %, 0,25 % und 0,025 %) bei einem BSA-Gehalt von 60 % verwendet. Die Lötmittel mit 0,025 % und 0,25 % ICG wurden zur Prüfung der Zugfestigkeit der gelöteten Verbindung in Abhängigkeit von der Leistungsdichte und der Expositionszeit untersucht. Das Lötmittel mit 0,025 % ICG wurde in den Untersuchungen zur Abhängigkeit der Zugfestigkeit von der Tierspezies, der Entnahmestelle des Knorpelgewebes und der Lötmitteldicke genutzt. Einflüsse der Lagerung des Lötmittels und der Anzahl an Lötmittelpunkten auf die Zugfestigkeit wurden mit dem Lötmittel mit 0,25 % ICG untersucht. Zusätzlich war zu prüfen ob durch ein Knorpelgewebefragment hindurch das CPG zu koagulieren ist. Zur Untersuchung thermisch bedingter Schäden wurden zum einen Temperaturmessungen an der Oberfläche des Knorpelgewebes, im Bereich des Lötmittels und in verschiedenen Tiefen unterhalb des Lötmittels durchgeführt. Zum anderen erfolgten histologische Untersuchungen der Knorpelgewebeproben nach Laseranwendung. Es ist möglich, mittels laserinduzierter Koagulation eines CPG eine Verbindung von Knorpelgewebe vom Schwein und Rind herzustellen. Mit Steigerung der Leistungsdichte und Verlängerung der Expositionszeit kommt es zur Erhöhung der Zugfestigkeit. Die Zugfestigkeiten waren bei Koagulation des CPG durch das Knorpelfragment hindurch niedriger als die Zugfestigkeiten mit aufgelegtem Lötmittel. Unter Laseranwendung kommt es zu einem steilen Ansteigen der Temperatur im Lötmittel bis zum Erreichen einer Höchsttemperatur. Die Steilheit des Temperaturanstieges und die sich einstellenden Temperaturen nehmen mit Erhöhung des im Lötmittel enthaltenen ICG-Gehaltes und der am Laser eingestellten Leistung zu. Die Temperaturerhöhung ist jedoch weitgehend auf das Lötmittel und dessen Randbereiche begrenzt. Die histologischen Untersuchungen verdeutlichten, dass die Laserbestrahlung von Knorpelgewebe mittels Diodenlaser (810 nm) nur eine sehr geringe Schädigung verursacht. Unter Verwendung eines Lötmittels kommt es durch die vom Lötmittel absorbierte Energie zu Schäden am umliegenden Knorpelgewebe. Diese Schädigung ist auf Randbereiche des Lötmittels begrenzt und nimmt mit steigender Leistung und Expositionszeit zu. Bei einer Leistungsdichte von (5,09 W/cm2) konnte eine Verbindung zwischen zwei Knorpelfragmenten erzielt werden, die bei einer Zugkraft von 13,3 N/cm2 nachgibt und bei der die Schädigungen des Knorpelgewebes minimal sind. Die vorliegenden Untersuchungen haben gezeigt, dass es möglich ist, Knorpelfragmente mittels laserinduzierter Koagulation eines CPGs miteinander zu fixieren. / Philipp Hoffmann Investigation for the fixation of articular cartilage tissue using laser-induced coagulation From the Large Animal Clinic for Surgery, Faculty of Veterinary Medicine, University of Leipzig, prepared at Research Centre of Medical Technology and Biotechnology GmbH, Bad Langensalza Submitted in January 2012 97 Pages, 59 figures, 9 tables, 318 references, 10 pages appendices Keywords: laser, soldering, cartilage tissue, tensile strength, thermal damage Joint diseases are among the most common causes of restricted movement of patients in the human and veterinary medicine. In addition to the conservative therapy, there are numerous surgical therapies, under which the various methods of autologous chondrocyteimplantation, have moved increasingly into the focus of scientific and clinical interest. As problematic and unsatisfactory is currently the fixation of the implants. The aim of this study was, first in vitro, taking advantage of articular cartilage tissue from cadaver material (pig, cattle) to incorporate a process by which it is possible to produce by laser-induced coagulation of solder a connection between two cartilage fragments with the smallest possible tissue damage. As solder was a suitable chromophore-protein-mixture (CPG) to establish which it was adapted to the wavelength of the laser is available, that the production of solder joints was possible. The mechanical strength of solder joints has been examined in several studies to optimize the laser settings and the solder ingredients by determining the tensile strength. Likewise, studies on the occurrence of thermal damage to the tissues were made by the laser-assisted soldering. Based on the study of the absorption properties of various chromophores and proteins the wavelength of the laser (810 nm diode laser) was tuned, and different CPG using the dye indocyanine green (ICG), which is within the acceptable in human medicine ICG-Pulsion ® (Pulsion Medical Systems AG, Munich) is included, and bovine serum albumin (BSA) were prepared. Articular cartilage tissue absorbs the radiation of the diode laser (810 nm) hardly (uA ≈ 0 to 0.02 cm–1). The solder (ICG + BSA), whose absorption maximum at 790 nm is close to the emission wavelength of the laser is absorbed. This can be avoided direct damage to the cartilage tissue through the absorption of laser radiation. In the studies, three solders were used with different proportions of ICG (1 %, 0.25 % and 0.025 %) at a content of 60 % BSA. The solder with 0.025 % and 0.25 % ICG were studied to test the tensile strength of the soldered connection as a function of power density and exposure time. The solder containing 0.025 % ICG was used in the investigations of the dependence of tensile strength of the animal species, the donor site of the cartilage and the solder thickness. Influences of storage the solder and the number of solder dots on the tensile strength were investigated with the solder with 0.25 % ICG. In addition it was to examine if it is possible to coagulate the CPG through an articular cartilage fragment. To investigate thermally induced damage to temperature measurements were performed on the surface of the cartilage tissue in the area of the solder and at various depths below the solder. Secondly, histological examinations were made of the articular cartilage after laser application. It is possible to produce by laser-induced coagulation of a CPG an articular cartilage bonding of pig and cattle. With increasing power density and lengthening the exposure time leads to the increase in tensile strength. The tensile strengths were measured with coagulation of the CPG passed through the cartilage fragment is lower than the tensile strengths with applied solder. Under laser application leads to a steep rise in temperature in the solder to reach a maximum temperature. The rate of temperature rise increases with increasing the solder contained in ICG content and on the laser power set. The temperature rise is limited largely to the solder and its peripheral areas. The histological examinations showed that the laser irradiation of cartilage tissue using diode laser (810 nm) only a very little damage caused. Using a solder it comes through the energy absorbed by the solder and damage to the surrounding articular cartilage tissue. This damage is limited to border areas and the flux increases with increasing power and exposure time. At a power density of (5.09 W/cm2) was a connection between two cartilage fragments are obtained, which yields at a tensile force of 13.3 N/cm2 and where the damage to the cartilage tissue is minimal. The present studies have shown that it is possible cartilage fragments by laser-inducedcoagulation of a CPG to fix each other.
22

Influence of process parameters on the tensile properties of DREF-3000 friction spun hybrid yarns consisting of waste staple carbon fiber for thermoplastic composites

Hasan, Mir Mohammad Badrul, Nitsche, Stefanie, Abdkader, Anwar, Cherif, Chokri 13 May 2022 (has links)
Due to their excellent strength, rigidity, and damping properties, as well as low weight, carbon fiber reinforced composites (CFRCs) are being widely used for load bearing structures. On the other hand, with an increased demand and usage of CFRCs, effective methods to re-use waste carbon fiber (CF) materials, which are recoverable either from process scraps or from end-of-life components, are attracting increased attention. In this paper, hybrid yarns consisting of waste staple CF (40 and 60 mm) and polyamide 6 staple fibers (60 mm) are manufactured on a DREF-3000 friction spinning machine with various process parameters, such as spinning drum speed, suction air pressure, and core–sheath ratio. The relationship between different textile physical properties of the hybrid yarns, such as tensile strength, elongation, and evenness with different spinning parameters, core–sheath ratio, and input CF length is revealed.
23

Schalentragwerke mit funktionaler Gradierung

Illguth, Sandy, Lowke, Dirk, Kränkel, Thomas, Gehlen, Christoph 21 July 2022 (has links)
Betone für schlanke Schalentragwerke weisen zur Sicherstellung ausreichender Zugfestigkeiten oft einen hohen Stahlfasergehalt auf. Dies ist mit hohen ökologischen und monetären Kosten verbunden. Das Ziel war es daher, die Voraussetzungen für die Herstellung effizienter Schalentragwerke aus funktional fasergradierten Betonfertigteilen zu schaffen. / Concrete for slender load-bearing shell structures often has a high steel fibre content to ensure sufficient tensile strength. This is associated with high ecological and financial costs. Thus, the aim of this project was to create the prerequisites for the production of efficient shell structures made of functional fibre-graded precast concrete elements.
24

Zusammenhang zwischen Struktur der Metalloberfläche und Verbundfestigkeit am Beispiel thermisch gefügter Thermoplast-Metall-Verbunde

Saborowski, Erik 31 January 2023 (has links)
Das Ziel dieser Arbeit besteht in der Erforschung des Zusammenhangs zwischen der Struktur der Metalloberfläche und der Verbundfestigkeit von thermisch gefügten Thermoplast-Metall-Verbunden. Dazu wird für die Haftungsmechanismen Stoff-, Kraft- und Formschluss an einem Minimalbeispiel rechnerisch gezeigt, dass verschiedene Oberflächenmerkmale (wahre Oberfläche, Strukturdichte, Aspektverhältnis, Hinterschnitte, Substrukturen) mit der Verbundfestigkeit in Verbindung stehen. Basierend darauf werden Oberflächenkenngrößen (standardisierte Rauheitsparameter, fraktale Dimension) gewählt, die die haftungsfördernden Strukturmerkmale möglichst umfassend einbeziehen. Daraus werden Hypothesen abgeleitet, die die Prognostizierbarkeit der Verbundfestigkeit aus Oberflächenkenngrößen für Thermoplast-Metall-Verbunde postulieren. Die experimentelle Überprüfung erfolgt an Aluminium im Verbund mit Polyamid 6 bzw. Polypropylen in Rohrtorsions-, Rohrzug- sowie Zugscherversuchen. Die Einstellung der Oberflächenstruktur des Aluminiums erfolgt durch mechanisches Strahlen, alkalisches Ätzen, thermisches Spritzen sowie Laserstrukturieren. Die Erfassung der Oberflächenstruktur erfolgt taktil sowie aus Querschliffaufnahmen. Die Höhe der Verbundfestigkeit kann anhand der Oberflächenstruktur erklärt und teilweise mit hoher Korrelation quantitativ in Verbindung gebracht werden. Bei taktiler Messung verhindert jedoch eine unzureichende Erfassung bestimmter Strukturmerkmale eine exakte Abbildung der tatsächlichen Oberflächenstruktur. Bei der Erfassung der Oberflächenstruktur aus Querschliffaufnahmen stellt die erreichbare Bildauflösung und -qualität einen limitierenden Faktor dar. Ebenso können aus der Oberflächenstruktur keine individuellen, strukturspezifischen Versagensmechanismen abgeleitet werden.:Inhaltsverzeichnis 5 Abbildungsverzeichnis 9 Tabellenverzeichnis 14 Abkürzungsverzeichnis 16 Symbolverzeichnis 17 1 Motivation 20 2 Stand der Wissenschaft und Technik 22 2.1 Verwendete Begriffe 22 2.2 Verbundwerkstoffe und Werkstoffverbunde 22 2.2.1 Faser-Kunststoff-Verbunde 24 2.2.2 Polymer-Metall-Verbunde 25 2.3 Fügen von Polymer-Metall-Verbunden 27 2.3.1 In-Mold Assembly 28 2.3.2 Kleben 28 2.3.3 Montage 29 2.3.4 Thermisches Fügen 31 2.4 Prüfung der Verbundfestigkeit 34 2.4.1 Prüfkörpergeometrien 34 2.4.2 Beständigkeit gegen Umwelteinflüsse 36 2.5 Verfahren zur Vorbehandlung der Metalloberfläche 38 2.5.1 Mechanisches Strahlen 39 2.5.2 Laserstrukturieren 40 2.5.3 Chemische und elektrochemische Verfahren 43 2.5.4 Beschichten 43 2.5.5 Weitere Verfahren 44 3 Zusammenhang zwischen Oberflächenstruktur und Verbundfestigkeit 46 3.1 Haftungsmechanismen 47 3.1.1 Stoffschluss 48 3.1.2 Kraftschluss 50 3.1.3 Formschluss 51 3.1.4 Skalenabhängigkeit 53 3.1.5 Eigenspannungen 54 3.1.6 Folgerungen 54 3.2 Charakterisierung der Oberflächenstruktur und Korrelation mit der Verbundfestigkeit 55 3.2.1 Standardisierte Rauheitsparameter 56 3.2.2 Fraktale Dimension 58 3.2.3 Anwendungsbeispiel 59 4 Zielstellung 62 4.1 Folgerungen aus dem Stand der Wissenschaft und Technik 62 4.2 Forschungshypothesen 63 5 Experimentelle Vorgehensweise 64 5.1 Charakterisierung der Ausgangswerkstoffe 64 5.2 Vorbehandlung der Metalloberflächen 67 5.2.1 Mechanisches Strahlen und alkalisches Ätzen 67 5.2.2 Thermisches Spritzen 68 5.2.3 Laserstrukturieren 68 5.3 Charakterisierung der Oberflächenstruktur 69 5.4 Mechanische Verbundprüfung 71 5.5 Verwendeter Fügeprozess 73 5.6 Statistische Betrachtung 75 6 Ergebnisse und Diskussion 77 6.1 Verbundfestigkeit in Abhängigkeit von der Oberflächenvorbehandlung 77 6.1.1 Rohrproben 77 6.1.1.1 Oberflächencharakteristika und Benetzung 77 6.1.1.2 Verbundfestigkeit und Korrelation mit Oberflächenkennwerten 81 6.1.1.3 Bruchflächenanalyse 85 6.1.2 Zugscherproben 90 6.1.2.1 Oberflächencharakteristika und Benetzung 90 6.1.2.2 Verbundfestigkeit und Korrelation mit den Oberflächenkennwerten 91 6.1.2.3 Bruchflächenanalyse 93 6.1.3 Ergebnisdiskussion 95 6.2 Verbundfestigkeit in Abhängigkeit von der Skalierung 97 6.2.1 Oberflächencharakteristika und Benetzung 97 6.2.2 Verbundfestigkeit und Korrelation mit Oberflächenkennwerten 102 6.2.3 Bruchflächenanalyse 102 6.2.4 Ergebnissdiskussion 106 7 Zusammenfassung und Folgerungen 108 8 Ausblick 112 Literaturverzeichnis 115 Anhang 129 / The aim of this work is to investigate the relationship between the structure of the metal surface and the compound strength of thermally joined thermoplastic-metal compounds. For this purpose, equations are derived for the adhesion mechanisms of material, force and form closure using a minimal example, which link various surface characteristics (true surface, structure density, aspect ratio, undercuts, substructures) with the compound strength. Based on this, surface parameters (standardized roughness parameters, fractal dimension) are chosen that incorporate the adhesion-promoting structural features as comprehensively as possible. From this, hypotheses are derived that postulate the predictability of compound strength from surface parameters for thermoplastic-metal composites. Experimental verification is carried out on aluminum in compounds with polyamide 6 or polypropylene in hollow cylinder torsion tests, hollow cylinder tensile tests as well as tensile shear tests. The surface of the aluminum is structured by mechanical blasting, alkaline etching, thermal spraying and laser structuring. The surface structure is recorded tactilely and from transverse micrographs. The height of the compound strength can be explained on the basis of surface structure and, in part, quantitatively related with high correlation. However, in the case of tactile measurement, nondetection of certain structural features prevents accurate mapping of the actual surface structure. When recording the surface structure from cross-section images, the achievable image resolution and quality is the limiting factor. Likewise, no individual, structure-specific failure mechanisms can be derived from the surface structure.:Inhaltsverzeichnis 5 Abbildungsverzeichnis 9 Tabellenverzeichnis 14 Abkürzungsverzeichnis 16 Symbolverzeichnis 17 1 Motivation 20 2 Stand der Wissenschaft und Technik 22 2.1 Verwendete Begriffe 22 2.2 Verbundwerkstoffe und Werkstoffverbunde 22 2.2.1 Faser-Kunststoff-Verbunde 24 2.2.2 Polymer-Metall-Verbunde 25 2.3 Fügen von Polymer-Metall-Verbunden 27 2.3.1 In-Mold Assembly 28 2.3.2 Kleben 28 2.3.3 Montage 29 2.3.4 Thermisches Fügen 31 2.4 Prüfung der Verbundfestigkeit 34 2.4.1 Prüfkörpergeometrien 34 2.4.2 Beständigkeit gegen Umwelteinflüsse 36 2.5 Verfahren zur Vorbehandlung der Metalloberfläche 38 2.5.1 Mechanisches Strahlen 39 2.5.2 Laserstrukturieren 40 2.5.3 Chemische und elektrochemische Verfahren 43 2.5.4 Beschichten 43 2.5.5 Weitere Verfahren 44 3 Zusammenhang zwischen Oberflächenstruktur und Verbundfestigkeit 46 3.1 Haftungsmechanismen 47 3.1.1 Stoffschluss 48 3.1.2 Kraftschluss 50 3.1.3 Formschluss 51 3.1.4 Skalenabhängigkeit 53 3.1.5 Eigenspannungen 54 3.1.6 Folgerungen 54 3.2 Charakterisierung der Oberflächenstruktur und Korrelation mit der Verbundfestigkeit 55 3.2.1 Standardisierte Rauheitsparameter 56 3.2.2 Fraktale Dimension 58 3.2.3 Anwendungsbeispiel 59 4 Zielstellung 62 4.1 Folgerungen aus dem Stand der Wissenschaft und Technik 62 4.2 Forschungshypothesen 63 5 Experimentelle Vorgehensweise 64 5.1 Charakterisierung der Ausgangswerkstoffe 64 5.2 Vorbehandlung der Metalloberflächen 67 5.2.1 Mechanisches Strahlen und alkalisches Ätzen 67 5.2.2 Thermisches Spritzen 68 5.2.3 Laserstrukturieren 68 5.3 Charakterisierung der Oberflächenstruktur 69 5.4 Mechanische Verbundprüfung 71 5.5 Verwendeter Fügeprozess 73 5.6 Statistische Betrachtung 75 6 Ergebnisse und Diskussion 77 6.1 Verbundfestigkeit in Abhängigkeit von der Oberflächenvorbehandlung 77 6.1.1 Rohrproben 77 6.1.1.1 Oberflächencharakteristika und Benetzung 77 6.1.1.2 Verbundfestigkeit und Korrelation mit Oberflächenkennwerten 81 6.1.1.3 Bruchflächenanalyse 85 6.1.2 Zugscherproben 90 6.1.2.1 Oberflächencharakteristika und Benetzung 90 6.1.2.2 Verbundfestigkeit und Korrelation mit den Oberflächenkennwerten 91 6.1.2.3 Bruchflächenanalyse 93 6.1.3 Ergebnisdiskussion 95 6.2 Verbundfestigkeit in Abhängigkeit von der Skalierung 97 6.2.1 Oberflächencharakteristika und Benetzung 97 6.2.2 Verbundfestigkeit und Korrelation mit Oberflächenkennwerten 102 6.2.3 Bruchflächenanalyse 102 6.2.4 Ergebnissdiskussion 106 7 Zusammenfassung und Folgerungen 108 8 Ausblick 112 Literaturverzeichnis 115 Anhang 129
25

Der Einfluss einer zweiaxialen Zugbelastung auf das Festigkeits- und Verformungsverhalten von Beton und gemischt bewehrten Bauteilen / The influence of a biaxial tensile stress on the strength and deformation behavior of concrete and mixed reinforced concrete components

Schröder, Steffen 01 February 2013 (has links) (PDF)
Das Zugtragverhalten von bewehrten und unbewehrten Bauteilen wird von einer Vielzahl von Faktoren beeinflusst. Maßgeblich wird es von der Festigkeit des verwendeten Betons, dem Verbundverhalten zwischen Bewehrung und Beton sowie vom vorhandenen Spannungszustand im Bauteil bestimmt. In der Regel werden im täglichen Planungsgeschäft des Ingenieurs einaxiale Spannungszustände unter Berücksichtigung der Materialeigenschaften des Betons aus den Standardprüfungen betrachtet. Jedoch treten in einer Vielzahl von Anwendungen mehraxiale Spannungszustände auf. Beispielhaft sollen hier Bereiche von zweiachsig spannenden Deckenplatten, in Bereichen von Rahmenecken, rotationssymmetrischen Bauwerkshüllen sowie bei Brückenbauwerken mit durchlaufender Fahrbahn im Bereich der Stützen genannt werden. Normative Regelungen sehen bisher im Falle einer zweiaxialen Druckbeanspruchung lediglich die Erhöhung der Druckfestigkeit bzw. Verbundspannung vor. Regelungen zur Festigkeit des Betons unter zweiaxialer Zugbelastung existieren dagegen nicht. Daraus abgeleitet stellt sich die Frage, welchen Einfluss eine zweiaxiale Zugbeanspruchung auf das Festigkeits- und Verformungsverhalten von unbewehrten und bewehrten Bauteilen ausübt. Mit Blick auf übliche Konstruktionsbetone sollen diese Fragestellungen für einen Beton C20/25 und C40/50 geklärt werden. Im Rahmen eines Forschungsvorhabens wurden hierzu Versuche an unbewehrten Betonsscheiben und gemischt bewehrten Bauteilen durchgeführt. Das im CEB-FIP MODELL CODE 90 vorgestellte Modell zur Beschreibung des einaxialen Spannungs-Dehnungs-Verhaltens bildet das reale Verhalten von Beton unter zweiaxialer Zugbelastung nur ungenügend ab. Hierfür werden Modelle zur Beschreibung des Verformungsverhaltens von Beton unter Berücksichtigung von zweiaxialen Spannungszuständen für einen Beton C20/25 und C40/50 entwickelt. Weiterhin werden Bruchkriterien für die zwei Betonsorten vorgestellt, mit denen die Zugfestigkeit des Betons unter zweiaxialer Zugbelastung bestimmt werden kann. Während bei einem Beton C20/25 die zweiaxiale Zugfestigkeit annähernd der einaxialen Zugfestigkeit entspricht, so nimmt die Zugfestigkeit des Betons C40/50 unter zweiaxialer Zugbelastung um ca. 25% ab. Hinsichtlich der Bruchdehnungen unter zweiaxialer Zugbelastung wurde festgestellt, dass diese mit steigendem Spannungsverhältnis 1 : 2 abnehmen. Darüber hinaus bilden die Modelle zur Bestimmung des Spannungs-Dehnungs-Verhaltens des unbewehrten Betons die Versuchsergebnisse sehr gut ab. Mit Hilfe der hier vorliegenden Ergebnisse können somit das Verformungs- und Festigkeitsverhalten von Beton unter zweiaxialer Zugbelastung sehr gut abgebildet werden. In Bauteilversuchen wurde das Verformungsverhalten unter zweiaxialer Zugbelastung von gemischt bewehrten Bauteilen untersucht. Die Bestimmung der Verformungen erfolgte hierbei mittels Dehnmessstreifen auf der Betonoberfläche, dem schlaffen Bewehrungsstahl und dem im nachträglichen Verbund liegenden Spannglied. Ein indirekter Nachweis des Einflusses auf das Verbundverhalten des Spanngliedes erfolgte. Es wurde aufgezeigt, dass unter zweiaxialer Zugbelastung die Dehnungen im Spannstahl infolge der Längsrissbildung über dem Hüllrohr abnehmen. Dies lässt die Aussage zu, dass die Verbundwirkung des Spanngliedes durch eine orthogonal wirkende Zugbelastung negativ beeinflusst wird. Aufbauend auf den Versuchsergebnissen wird eine Empfehlung für den Einsatz von Dehnmessstreifen zur Bestimmung der Verformungen auf einbetonierten Betonstählen gegeben. Die Berechnung der Erstrisslasten aus den Bauteilversuchen mit den entwickelten Bruchkriterien hat eine sehr gute Übereinstimmung ergeben. / The tensile load-bearing characteristics of structural elements made of reinforced or non-reinforced concrete is influenced by a number of factors. Mainly it depends on the strength of the concrete, the interaction between the concrete and the rebar, and the state of stress in the concrete element. Traditionally the designing engineer examines uni-axial stress conditions under consideration of the material properties of the concrete based on standard tests. However, multiple-stress conditions apply for a number of application of such elements, e.g. in concrete slabs designed for bi-axial load bearing, in the joints of frames, in axial symmetrical constructions, or in the intersections of column and deck of multi-span bridges. The commonly used design standard recommends the increase of the compression strength of the concrete or the bond stress for cases of bi-axial load-bearing caused by compression. However, no recommendations are given for the design strength of a concrete under bi-axial tensile stress. Therefore it is interesting to know how a bi-axial tensile stress is influencing the load-bearing and deformation behaviour of structural elements made of reinforced or non-reinforced concrete. This has been investigated for two commonly used concretes (C20/25 and C40/50). Part of an earlier research programme was to perform trials on slabs made of reinforced and non-reinforced concrete. In result a model CEB-FIP MODELL CODE 90 was introduced to describe the deformation of the slab due to a uni-axial stress. However, the model does not satisfactory describe the real behaviour of the slab under a bi-axial tensile stress. In this dissertation a new model will be presented to describe the deformation behaviour of a Concrete C20/25 and a Concrete C40/50 under bi-axial tensile stress. Furthermore, criteria for the two concretes are introduced to describe the ultimate limit state under bi-axial tensile stress. It has been found the bi-axial tensile strength of a Concrete C20/25 is comparable to its uni-axial strength. In difference, the tensile strength of a Concrete C40/50 is decreased by 25% when subject to bi-axial stress. The ultimate limit stress due to bi-axial tensile stress decreases with increasing ratio of the stress 1 : 2. The Strains 1 and 2 are the strains as a result of the biaxial tensile forces in the main directions. The presented model to describe the strain-stress behaviour of an unreinforced concrete is found to agree well with the observations from the trials. Based on the results of this thesis it is possible to describe the strain-stress behaviour of concrete under bi-axial tensile stress. The stress-strain behaviour of structural elements has been investigated under bi-axial tensile stresses. Strains have been monitored with strain-gauges fixed to the surface of the concrete, to the rebars and to the post-tensioning tendons. Therefore, the influence to the interaction of tendon and concrete has been demonstrated indirectly. Furthermore, it has been shown the strain of the tendon decreases following the development of cracks along the grout tube due to the application of bi-axial tensile stress. It can be concluded the bound of the tendon is influenced adversely by tensile stresses applied in perpendicular direction. Recommendations are given for the application of strain-gauges to measure strains of rebars set in concrete. Based on these trials, the estimation of the critical stress to develop initial cracks has been found in good agreement to the presented criteria.
26

Improvement of Serviceability and Strength of Textile Reinforced Concrete by using Short Fibres

Hinzen, Marcus, Brameshuber, Wolfgang 03 June 2009 (has links) (PDF)
Nowadays, thin-walled load bearing structures can be realised using textile reinforced concrete (BRAMESHUBER and RILEM TC 201-TRC [1]). The required tensile strength is achieved by embedding several layers of textile. By means of the laminating technique the number of textile layers that can be included into the concrete could be increased. To further increase the first crack stress and the ductility as well as to optimize the crack development, fine grained concrete mixes with short fibres can be used. By a schematic stress-strain curve the demands on short fibres are defined. Within the scope of this study, short fibres made of glass, carbon, aramid and polyvinyl alcohol are investigated in terms of their ability to fit these requirements. On the basis of these results, the development of hybrid fibre mixes to achieve the best mechanical properties is described. Additionally, a conventional FRC with one fibre type is introduced. Finally, the fresh and hardened concrete properties as well as the influence of short fibres on the load bearing behaviour of textile reinforced concrete are discussed.
27

Brazilian test on anisotropic rocks

Dinh, Quoc Dan 29 September 2011 (has links) (PDF)
The present work describes investigations on the anisotropic strength behavior of rocks in the splitting tensile test (Brazilian test). Three transversely isotropic rocks (gneiss, slate and sandstone) were studied in the Lab. A total of more than 550 indirect tensile strength tests were conducted, with emphasis was placed on the investigation of the influence of the spatial position of anisotropic weakness plane to the direction of the load on the fracture strength and fracture or fracture mode. In parallel, analytical solutions were evaluated for stress distribution and developed 3D numerical models to study the stress distribution and the fracture mode at the transversely isotropic disc. There were new findings on the fracture mode of crack propagation, the influence of the disc thickness, the influence of the applying loading angle and angle of the loading-foliation for transversely isotropic material. / Inhalt der Arbeit sind Untersuchungen zum anisotropen Festigkeitsverhalten von Gesteinen beim Spaltzugversuch (Brazilian Test). Laborativ wurden drei transversalisotrope Gesteine (Granit, Schiefer und Sandstein) untersucht. Insgesamt wurden mehr als 550 Spaltzugversuche durchgeführt, wobei der Schwerpunkt auf die Untersuchung des Einflusses der räumlichen Lage der Anisotropieebene zur Richtung des Lasteintrages auf die Bruchfestigkeit und das Bruchbild bzw. den Bruchmodus gelegt wurde. Parallel dazu wurden analytische Lösungen zur Spannungsverteilung ausgewertet sowie numerische 3D-Modelle entwickelt, um die Spannungsverteilung sowie den Bruchmodus bei einer transversalisotropen Scheibe zu untersuchen. Es wurden neue Erkenntnisse zum Bruchmodus, der Rissausbreitung, des Einflusses der Scheibendicke, dem Einfluss des Lasteinleitungswinkel sowie des Winkels Lasteintrag - Anisotropieebene für transversalisotropes Material gewonnen.
28

Influence of the Melt Flow Rate on the Mechanical Properties of Polyoxymethylene (POM)

Faust, Karsten, Bergmann, André, Sumpf, Jens January 2017 (has links)
In this article the correlation between the average molar mass and the melt flow rate (MFR) is achieved. Based on the example of Polyoxymethylene (POM) it is shown that a high average molar mass is associated with a low MFR (high viscosity). On the basis of this dependency, the mechanical properties of static and dynamic tensile strength, elastic modulus, hardness and notched impact strength are investigated. It was found that the characteristic values of static tensile strength, elastic modulus and hard-ness increase with increasing MFR (decreasing viscosity). On the other hand the dynamic long-term properties and notched impact strengths decrease with increasing MFR. / Im Beitrag wird der Zusammenhang zwischen der mittleren molaren Masse und des Schmelzfließindex (MFR) hergestellt. Dabei wird am Beispiel von Polyoxymethylen (POM) ersichtlich, dass eine hohe mittlere molare Masse mit einem geringen MFR (hochviskos) einhergeht. Basierend auf dieser Abhängigkeit werden die mechanischen Eigenschaften statische und dynamische Zugfestigkeit, E-Modul, Härte sowie Kerbschlagzähigkeit untersucht. Dabei konnte festgestellt werden, dass die Kenngrößen statische Zugfestigkeit, E-Modul und Härte mit steigendem MFR (abnehmende Viskosität) zunehmen. Die dynamischen Langzeiteigenschaften und Kerbschlagzähigkeiten sinken hingegen mit zunehmendem MFR.
29

Brazilian test on anisotropic rocks: laboratory experiment, numerical simulation and interpretation

Dinh, Quoc Dan 09 February 2011 (has links)
The present work describes investigations on the anisotropic strength behavior of rocks in the splitting tensile test (Brazilian test). Three transversely isotropic rocks (gneiss, slate and sandstone) were studied in the Lab. A total of more than 550 indirect tensile strength tests were conducted, with emphasis was placed on the investigation of the influence of the spatial position of anisotropic weakness plane to the direction of the load on the fracture strength and fracture or fracture mode. In parallel, analytical solutions were evaluated for stress distribution and developed 3D numerical models to study the stress distribution and the fracture mode at the transversely isotropic disc. There were new findings on the fracture mode of crack propagation, the influence of the disc thickness, the influence of the applying loading angle and angle of the loading-foliation for transversely isotropic material.:ACKNOWLEDGMENTS 5 ABSTRACT 7 TABLE OF CONTENTS 9 LIST OF FIGURES 13 LIST OF TABLES 19 I. INTRODUCTION 21 Objective of this work 22 Scope of work 23 Research procedure 23 Significance of the work 24 Layout 24 1 STATE OF THE ART 27 1.1 Review of the Brazilian tensile strength test 27 1.1.1 General overview 27 1.1.2 Development of the Brazilian tensile strength test 29 1.1.3 The Brazilian tensile strength test on anisotropic rocks 31 1.1.4 Summary 32 1.2 Analytical aspects 33 1.2.1 Hypotheses for the conventional Brazilian test 34 1.2.2 Failure criteria 36 1.2.3 Crack initiation and propagation 39 1.2.4 Summary 41 1.3 Numerical considerations 41 1.3.1 Numerical methods 42 1.3.2 Summary 42 1.4 Conclusion 43 2 DIAMETRAL COMPRESSION IN A SOLID DISC – COMPILATION OF ANALYTICAL AND SEMI-ANALYTICAL SOLUTIONS 45 2.1 Introduction 45 2.2 Diametral compressive stress distribution in an isotropic elastic disc 45 2.2.1 Elastic theory of line load 46 2.2.2 2D analytical solutions 47 2.2.3 3D disc under line and diametral compressive distributed loads 55 2.2.4 3D solution under diametral compressive distributed load 56 2.3 Stress and strain in an isotropic solid disc 59 2.4 Stress and strain in anisotropic rocks 61 2.5 Conclusion 65 3 LABORATORY TESTS 69 3.1 Introduction 69 3.2 Laboratory test program 70 3.3 Sample preparation 71 3.4 Ultrasonic measurements 72 3.5 Uniaxial and triaxial compression tests 73 3.5.1 Uniaxial compression test 73 3.5.2 Triaxial compression tests 74 3.6 Brazilian tensile strength tests 76 3.6.1 Test apparatus 76 3.6.2 Laboratory test results 77 3.6.3 Interpretation of the test results 89 3.7 Conclusion 96 4 NUMERICAL SIMULATION OF ISOTROPIC MATERIALS - COMPARISON WITH ANALYTICAL SOLUTIONS 97 4.1 Introduction 97 4.2 Numerical simulation of isotropic materials 97 4.2.1 FLAC3D simulation program 97 4.2.2 Simulation procedure 98 4.2.3 Numerical model setup 98 4.2.4 Influence of mesh type 99 4.2.5 Influence of specimen thickness 100 4.2.6 Influence of Poisson’s ratio 102 4.2.7 Influence of loading angle (2) 106 4.2.8 Comparison of 3D analytical and numerical results 110 4.2.9 Influence of stress concentration at the loading jaws 112 4.3 Comparison with experimental results of Postaer Sandstone (FG.Ss) 112 4.4 Conclusion 114 5 NUMERICAL SIMULATION OF ANISOTROPIC MATERIALS - COMPARISON WITH LABORATORY TESTS 117 5.1 Introduction 117 5.2 General procedure for simulating the Brazilian test using FLAC3D 117 5.2.1 Conceptual model 119 5.2.2 Boundary Conditions 119 5.2.3 Numerical model set-up 120 5.3 Constitutive model 121 5.3.1 Choice of constitutive model 121 5.3.2 Bilinear Strain-Hardening/Softening Ubiquitous-Joint Model [98] 121 5.4 Parameter calibration 124 5.4.1 Material parameters used 124 5.4.2 Contact between disc and loading jaws 126 5.4.3 Post-failure deformation properties 128 5.4.4 Tension cut-off 129 5.5 Numerical simulation results 131 5.5.1 Introduction 131 5.5.2 Stress distribution and failure state 133 5.5.3 Stress state in an isotropic elastic medium with arbitrary orientation planes 136 5.5.4 Plasticity states 139 5.5.5 Damage and fracture process 141 5.5.6 Fracture patterns – Comparison of lab results and numerical simulations 148 5.6 Tensile strength – Comparison of lab results and numerical simulations 149 5.6.1 Tensile strength of Le.Gs Gneiss 150 5.6.2 Tensile strength of My.Sc Slate 155 5.7 Summary and Review 159 5.7.1 Potential failure state deduced from pure elastic considerations 159 5.7.2 Tensile strength distribution 160 5.7.3 Tensile strength – determining the anisotropy factor 161 5.7.4 Tensile strength – different procedures - different results 163 6 CONCLUSION AND RECOMMENDATIONS 165 APPENDICES 171 Appendix 3.1 - Fracture patterns in FG.Ss samples 171 Appendix 3.2 - Fracture patterns in FG.Gs samples 177 Appendix 3.3 - Fracture patterns in Le.Gs samples 183 Appendix 3.4 - Fracture patterns in My.Sc samples 190 Appendix 4.1 - Influence of loading angle 197 Appendix 4.2 - Influence of material properties 203 Appendix 5.1 - Failure zone state in Le.Gs Gneiss 209 Appendix 5.2: Failure zone state in My.Sc Slate 216 REFERENCES 223 / Inhalt der Arbeit sind Untersuchungen zum anisotropen Festigkeitsverhalten von Gesteinen beim Spaltzugversuch (Brazilian Test). Laborativ wurden drei transversalisotrope Gesteine (Granit, Schiefer und Sandstein) untersucht. Insgesamt wurden mehr als 550 Spaltzugversuche durchgeführt, wobei der Schwerpunkt auf die Untersuchung des Einflusses der räumlichen Lage der Anisotropieebene zur Richtung des Lasteintrages auf die Bruchfestigkeit und das Bruchbild bzw. den Bruchmodus gelegt wurde. Parallel dazu wurden analytische Lösungen zur Spannungsverteilung ausgewertet sowie numerische 3D-Modelle entwickelt, um die Spannungsverteilung sowie den Bruchmodus bei einer transversalisotropen Scheibe zu untersuchen. Es wurden neue Erkenntnisse zum Bruchmodus, der Rissausbreitung, des Einflusses der Scheibendicke, dem Einfluss des Lasteinleitungswinkel sowie des Winkels Lasteintrag - Anisotropieebene für transversalisotropes Material gewonnen.:ACKNOWLEDGMENTS 5 ABSTRACT 7 TABLE OF CONTENTS 9 LIST OF FIGURES 13 LIST OF TABLES 19 I. INTRODUCTION 21 Objective of this work 22 Scope of work 23 Research procedure 23 Significance of the work 24 Layout 24 1 STATE OF THE ART 27 1.1 Review of the Brazilian tensile strength test 27 1.1.1 General overview 27 1.1.2 Development of the Brazilian tensile strength test 29 1.1.3 The Brazilian tensile strength test on anisotropic rocks 31 1.1.4 Summary 32 1.2 Analytical aspects 33 1.2.1 Hypotheses for the conventional Brazilian test 34 1.2.2 Failure criteria 36 1.2.3 Crack initiation and propagation 39 1.2.4 Summary 41 1.3 Numerical considerations 41 1.3.1 Numerical methods 42 1.3.2 Summary 42 1.4 Conclusion 43 2 DIAMETRAL COMPRESSION IN A SOLID DISC – COMPILATION OF ANALYTICAL AND SEMI-ANALYTICAL SOLUTIONS 45 2.1 Introduction 45 2.2 Diametral compressive stress distribution in an isotropic elastic disc 45 2.2.1 Elastic theory of line load 46 2.2.2 2D analytical solutions 47 2.2.3 3D disc under line and diametral compressive distributed loads 55 2.2.4 3D solution under diametral compressive distributed load 56 2.3 Stress and strain in an isotropic solid disc 59 2.4 Stress and strain in anisotropic rocks 61 2.5 Conclusion 65 3 LABORATORY TESTS 69 3.1 Introduction 69 3.2 Laboratory test program 70 3.3 Sample preparation 71 3.4 Ultrasonic measurements 72 3.5 Uniaxial and triaxial compression tests 73 3.5.1 Uniaxial compression test 73 3.5.2 Triaxial compression tests 74 3.6 Brazilian tensile strength tests 76 3.6.1 Test apparatus 76 3.6.2 Laboratory test results 77 3.6.3 Interpretation of the test results 89 3.7 Conclusion 96 4 NUMERICAL SIMULATION OF ISOTROPIC MATERIALS - COMPARISON WITH ANALYTICAL SOLUTIONS 97 4.1 Introduction 97 4.2 Numerical simulation of isotropic materials 97 4.2.1 FLAC3D simulation program 97 4.2.2 Simulation procedure 98 4.2.3 Numerical model setup 98 4.2.4 Influence of mesh type 99 4.2.5 Influence of specimen thickness 100 4.2.6 Influence of Poisson’s ratio 102 4.2.7 Influence of loading angle (2) 106 4.2.8 Comparison of 3D analytical and numerical results 110 4.2.9 Influence of stress concentration at the loading jaws 112 4.3 Comparison with experimental results of Postaer Sandstone (FG.Ss) 112 4.4 Conclusion 114 5 NUMERICAL SIMULATION OF ANISOTROPIC MATERIALS - COMPARISON WITH LABORATORY TESTS 117 5.1 Introduction 117 5.2 General procedure for simulating the Brazilian test using FLAC3D 117 5.2.1 Conceptual model 119 5.2.2 Boundary Conditions 119 5.2.3 Numerical model set-up 120 5.3 Constitutive model 121 5.3.1 Choice of constitutive model 121 5.3.2 Bilinear Strain-Hardening/Softening Ubiquitous-Joint Model [98] 121 5.4 Parameter calibration 124 5.4.1 Material parameters used 124 5.4.2 Contact between disc and loading jaws 126 5.4.3 Post-failure deformation properties 128 5.4.4 Tension cut-off 129 5.5 Numerical simulation results 131 5.5.1 Introduction 131 5.5.2 Stress distribution and failure state 133 5.5.3 Stress state in an isotropic elastic medium with arbitrary orientation planes 136 5.5.4 Plasticity states 139 5.5.5 Damage and fracture process 141 5.5.6 Fracture patterns – Comparison of lab results and numerical simulations 148 5.6 Tensile strength – Comparison of lab results and numerical simulations 149 5.6.1 Tensile strength of Le.Gs Gneiss 150 5.6.2 Tensile strength of My.Sc Slate 155 5.7 Summary and Review 159 5.7.1 Potential failure state deduced from pure elastic considerations 159 5.7.2 Tensile strength distribution 160 5.7.3 Tensile strength – determining the anisotropy factor 161 5.7.4 Tensile strength – different procedures - different results 163 6 CONCLUSION AND RECOMMENDATIONS 165 APPENDICES 171 Appendix 3.1 - Fracture patterns in FG.Ss samples 171 Appendix 3.2 - Fracture patterns in FG.Gs samples 177 Appendix 3.3 - Fracture patterns in Le.Gs samples 183 Appendix 3.4 - Fracture patterns in My.Sc samples 190 Appendix 4.1 - Influence of loading angle 197 Appendix 4.2 - Influence of material properties 203 Appendix 5.1 - Failure zone state in Le.Gs Gneiss 209 Appendix 5.2: Failure zone state in My.Sc Slate 216 REFERENCES 223
30

Der Einfluss einer zweiaxialen Zugbelastung auf das Festigkeits- und Verformungsverhalten von Beton und gemischt bewehrten Bauteilen

Schröder, Steffen 29 November 2012 (has links)
Das Zugtragverhalten von bewehrten und unbewehrten Bauteilen wird von einer Vielzahl von Faktoren beeinflusst. Maßgeblich wird es von der Festigkeit des verwendeten Betons, dem Verbundverhalten zwischen Bewehrung und Beton sowie vom vorhandenen Spannungszustand im Bauteil bestimmt. In der Regel werden im täglichen Planungsgeschäft des Ingenieurs einaxiale Spannungszustände unter Berücksichtigung der Materialeigenschaften des Betons aus den Standardprüfungen betrachtet. Jedoch treten in einer Vielzahl von Anwendungen mehraxiale Spannungszustände auf. Beispielhaft sollen hier Bereiche von zweiachsig spannenden Deckenplatten, in Bereichen von Rahmenecken, rotationssymmetrischen Bauwerkshüllen sowie bei Brückenbauwerken mit durchlaufender Fahrbahn im Bereich der Stützen genannt werden. Normative Regelungen sehen bisher im Falle einer zweiaxialen Druckbeanspruchung lediglich die Erhöhung der Druckfestigkeit bzw. Verbundspannung vor. Regelungen zur Festigkeit des Betons unter zweiaxialer Zugbelastung existieren dagegen nicht. Daraus abgeleitet stellt sich die Frage, welchen Einfluss eine zweiaxiale Zugbeanspruchung auf das Festigkeits- und Verformungsverhalten von unbewehrten und bewehrten Bauteilen ausübt. Mit Blick auf übliche Konstruktionsbetone sollen diese Fragestellungen für einen Beton C20/25 und C40/50 geklärt werden. Im Rahmen eines Forschungsvorhabens wurden hierzu Versuche an unbewehrten Betonsscheiben und gemischt bewehrten Bauteilen durchgeführt. Das im CEB-FIP MODELL CODE 90 vorgestellte Modell zur Beschreibung des einaxialen Spannungs-Dehnungs-Verhaltens bildet das reale Verhalten von Beton unter zweiaxialer Zugbelastung nur ungenügend ab. Hierfür werden Modelle zur Beschreibung des Verformungsverhaltens von Beton unter Berücksichtigung von zweiaxialen Spannungszuständen für einen Beton C20/25 und C40/50 entwickelt. Weiterhin werden Bruchkriterien für die zwei Betonsorten vorgestellt, mit denen die Zugfestigkeit des Betons unter zweiaxialer Zugbelastung bestimmt werden kann. Während bei einem Beton C20/25 die zweiaxiale Zugfestigkeit annähernd der einaxialen Zugfestigkeit entspricht, so nimmt die Zugfestigkeit des Betons C40/50 unter zweiaxialer Zugbelastung um ca. 25% ab. Hinsichtlich der Bruchdehnungen unter zweiaxialer Zugbelastung wurde festgestellt, dass diese mit steigendem Spannungsverhältnis 1 : 2 abnehmen. Darüber hinaus bilden die Modelle zur Bestimmung des Spannungs-Dehnungs-Verhaltens des unbewehrten Betons die Versuchsergebnisse sehr gut ab. Mit Hilfe der hier vorliegenden Ergebnisse können somit das Verformungs- und Festigkeitsverhalten von Beton unter zweiaxialer Zugbelastung sehr gut abgebildet werden. In Bauteilversuchen wurde das Verformungsverhalten unter zweiaxialer Zugbelastung von gemischt bewehrten Bauteilen untersucht. Die Bestimmung der Verformungen erfolgte hierbei mittels Dehnmessstreifen auf der Betonoberfläche, dem schlaffen Bewehrungsstahl und dem im nachträglichen Verbund liegenden Spannglied. Ein indirekter Nachweis des Einflusses auf das Verbundverhalten des Spanngliedes erfolgte. Es wurde aufgezeigt, dass unter zweiaxialer Zugbelastung die Dehnungen im Spannstahl infolge der Längsrissbildung über dem Hüllrohr abnehmen. Dies lässt die Aussage zu, dass die Verbundwirkung des Spanngliedes durch eine orthogonal wirkende Zugbelastung negativ beeinflusst wird. Aufbauend auf den Versuchsergebnissen wird eine Empfehlung für den Einsatz von Dehnmessstreifen zur Bestimmung der Verformungen auf einbetonierten Betonstählen gegeben. Die Berechnung der Erstrisslasten aus den Bauteilversuchen mit den entwickelten Bruchkriterien hat eine sehr gute Übereinstimmung ergeben. / The tensile load-bearing characteristics of structural elements made of reinforced or non-reinforced concrete is influenced by a number of factors. Mainly it depends on the strength of the concrete, the interaction between the concrete and the rebar, and the state of stress in the concrete element. Traditionally the designing engineer examines uni-axial stress conditions under consideration of the material properties of the concrete based on standard tests. However, multiple-stress conditions apply for a number of application of such elements, e.g. in concrete slabs designed for bi-axial load bearing, in the joints of frames, in axial symmetrical constructions, or in the intersections of column and deck of multi-span bridges. The commonly used design standard recommends the increase of the compression strength of the concrete or the bond stress for cases of bi-axial load-bearing caused by compression. However, no recommendations are given for the design strength of a concrete under bi-axial tensile stress. Therefore it is interesting to know how a bi-axial tensile stress is influencing the load-bearing and deformation behaviour of structural elements made of reinforced or non-reinforced concrete. This has been investigated for two commonly used concretes (C20/25 and C40/50). Part of an earlier research programme was to perform trials on slabs made of reinforced and non-reinforced concrete. In result a model CEB-FIP MODELL CODE 90 was introduced to describe the deformation of the slab due to a uni-axial stress. However, the model does not satisfactory describe the real behaviour of the slab under a bi-axial tensile stress. In this dissertation a new model will be presented to describe the deformation behaviour of a Concrete C20/25 and a Concrete C40/50 under bi-axial tensile stress. Furthermore, criteria for the two concretes are introduced to describe the ultimate limit state under bi-axial tensile stress. It has been found the bi-axial tensile strength of a Concrete C20/25 is comparable to its uni-axial strength. In difference, the tensile strength of a Concrete C40/50 is decreased by 25% when subject to bi-axial stress. The ultimate limit stress due to bi-axial tensile stress decreases with increasing ratio of the stress 1 : 2. The Strains 1 and 2 are the strains as a result of the biaxial tensile forces in the main directions. The presented model to describe the strain-stress behaviour of an unreinforced concrete is found to agree well with the observations from the trials. Based on the results of this thesis it is possible to describe the strain-stress behaviour of concrete under bi-axial tensile stress. The stress-strain behaviour of structural elements has been investigated under bi-axial tensile stresses. Strains have been monitored with strain-gauges fixed to the surface of the concrete, to the rebars and to the post-tensioning tendons. Therefore, the influence to the interaction of tendon and concrete has been demonstrated indirectly. Furthermore, it has been shown the strain of the tendon decreases following the development of cracks along the grout tube due to the application of bi-axial tensile stress. It can be concluded the bound of the tendon is influenced adversely by tensile stresses applied in perpendicular direction. Recommendations are given for the application of strain-gauges to measure strains of rebars set in concrete. Based on these trials, the estimation of the critical stress to develop initial cracks has been found in good agreement to the presented criteria.

Page generated in 0.0815 seconds