Return to search

Finite sample analysis of profile M-estimators

In dieser Arbeit wird ein neuer Ansatz für die Analyse von Profile Maximierungsschätzern präsentiert. Es werden die Ergebnisse von Spokoiny (2011) verfeinert und angepasst für die Schätzung von Komponenten von endlich dimensionalen Parametern mittels der Maximierung eines Kriteriumfunktionals. Dabei werden Versionen des Wilks Phänomens und der Fisher-Erweiterung für endliche Stichproben hergeleitet und die dafür kritische Relation der Parameterdimension zum Stichprobenumfang gekennzeichnet für den Fall von identisch unabhängig verteilten Beobachtungen und eines hinreichend glatten Funktionals. Die Ergebnisse werden ausgeweitet für die Behandlung von Parametern in unendlich dimensionalen Hilberträumen. Dabei wir die Sieve-Methode von Grenander (1981) verwendet. Der Sieve-Bias wird durch übliche Regularitätsannahmen an den Parameter und das Funktional kontrolliert. Es wird jedoch keine Basis benötigt, die orthogonal in dem vom Model induzierten Skalarprodukt ist. Weitere Hauptresultate sind zwei Konvergenzaussagen für die alternierende Maximisierungsprozedur zur approximation des Profile-Schätzers. Alle Resultate werden anhand der Analyse der Projection Pursuit Prozedur von Friendman (1981) veranschaulicht. Die Verwendung von Daubechies-Wavelets erlaubt es unter natürlichen und üblichen Annahmen alle theoretischen Resultate der Arbeit anzuwenden. / This thesis presents a new approach to analyze profile M-Estimators for finite samples. The results of Spokoiny (2011) are refined and adapted to the estimation of components of a finite dimensional parameter using the maximization of a criterion functional. A finite sample versions of the Wilks phenomenon and Fisher expansion are obtained and the critical ratio of parameter dimension to sample size is derived in the setting of i.i.d. samples and a smooth criterion functional. The results are extended to parameters in infinite dimensional Hilbert spaces using the sieve approach of Grenander (1981). The sieve bias is controlled via common regularity assumptions on the parameter and functional. But our results do not rely on an orthogonal basis in the inner product induced by the model. Furthermore the thesis presents two convergence results for the alternating maximization procedure. All results are exemplified in an application to the Projection Pursuit Procedure of Friendman (1981). Under a set of natural and common assumptions all theoretical results can be applied using Daubechies wavelets.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17947
Date02 September 2015
CreatorsAndresen, Andreas
ContributorsSpokoiny, Vladimir, Blanchard, Gilles, Nickl, Richard
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageGerman
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
RightsNamensnennung - Weitergabe unter gleichen Bedingungen, http://creativecommons.org/licenses/by-sa/3.0/de/

Page generated in 0.0024 seconds