Return to search

QCD+QED simulations with C* boundary conditions

Es gibt im Allgemeinen zwei Paradigmen für Entdeckungen in der Teilchenphysik:
direkte und indirekte Suchen. Direkte Suchen zielen darauf ab, klare Signale für vermutete Phänomene zu finden, während indirekte Suchen nach Abweichungen zwischen theoretischen Vorhersagen und experimentellen Messungen suchen. Nach dem Nachweis des Higgs-Bosons, wodurch das Standardmodell der Teilchenphysik vervollständigt wurde, haben sich indirekte Suchen als besonders relevant erwiesen, da direkte Nachweise von Physik jenseits des Standardmodells bei aktuellen Energiebereichen unwahrscheinlich sind. Die Herausforderung besteht darin, die Präzision der theoretischen Vorhersagen zu erhöhen, um mögliche Diskrepanzen zu erkennen. Hierbei spielen Gitter-QCD Simulationen für die Berechnung nichtperturbativer hadronischer Observablen eine zentrale Rolle. Für Vorhersagen mit subprozentualer Genauigkeit sind Korrekturen durch Strahlungseffekte und Isospin-Brechung zunehmend wichtig, was durch die Simulation von QCD+QED erreicht wird. Die Einbeziehung von QED stellt neue technische Herausforderungen dar. Diese Arbeit fokussiert sich auf einen Ansatz, der QED-Probleme in endlichen Volumina löst und dabei Eichinvarianz, Lokalität und Translationssymmetrie wahrt, bekannt als QED mit C-Paritäts-Randbedingungen (QED$_C$). Es werden erste umfangreiche QCD+QED$_C$-Simulationen analysiert, darunter acht Eichfeld-Ensembles mit unterschiedlichen Werten der renormierten elektrischen Kopplung, jedoch gleicher Pionenmasse und Gitterabstand. Außerdem wird auf die Einstellung (tuning) der Eingabeparameter für Gittersimulationen eingegangen, um reale physikalische Verhältnisse zu reproduzieren, sowie eine optimierte Strategie mittels Neugewichtung (reweighting) der nackten Quarkmassen im Kontext des RHMC-Algorithmus vorgestellt und evaluiert. / Particle physics research employs two primary approaches for discoveries: direct and indirect searches. Direct searches aim to directly observe phenomena, while indirect searches seek discrepancies between theoretical predictions and experimental results. With the discovery of the Higgs boson, the standard model of particle physics was completed, shifting the focus towards indirect searches due to the lack of compelling evidence for new physics at current energy scales. These searches necessitate highly precise theoretical predictions, particularly for non-perturbative hadronic observables, which are calculated using lattice QCD simulations. The need for sub-percent precision has highlighted the importance of accounting for radiative and isospin-breaking corrections, leading to the simulation of fully dynamical QCD+QED.

This thesis addresses the challenges of incorporating QED into lattice QCD, focusing on an approach that maintains gauge invariance, locality, and translational invariance using QED with C-parity boundary conditions (QED$_C$). It presents a comprehensive technical analysis of the first large-scale QCD+QED$_C$ simulations, detailing eight fully dynamical gauge field ensembles with various renormalized electric coupling values ($\alpha_\mathrm{R} \in \{0,1/137,0.04\}$), consistent pion mass ($m_\pi \approx 400$ MeV), and lattice spacing ($a\approx 0.05$ fm). The thesis examines the stability of the simulation algorithm, finite volume effects, and the behavior of different hadron masses.

Furthermore, it elaborates on the tuning of input parameters for lattice simulations to replicate real-world physics accurately, focusing on the hadronic renormalization scheme used to fix bare quark masses. It introduces an optimized strategy for tuning QCD+QED parameters via mass reweighting, adapted for simulations using the RHMC algorithm, highlighting its development, implementation, and testing.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/29035
Date14 March 2024
CreatorsLücke, Jens
ContributorsPatella, Agostino, Sommer, Rainer, Meyer, Harvey
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY 4.0) Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/

Page generated in 0.0034 seconds