Os processos oxidativos avançados são promissores para a degradação de compostos orgânicos resistentes aos tratamentos convencionais, como o fenol. A fluidodinâmica computacional (CFD) tornou-se uma poderosa ferramenta para analisar processos fotoquímicos por resolver os balanços acoplados de quantidade de movimento, de massa e de radiação. O objetivo deste trabalho é investigar o processo UV/H2O2 num reator fotoquímico anular usando CFD e um modelo cinético mais realista. O modelo em CFD foi criado de forma progressiva. Inicialmente, foram determinados os campos de velocidade para três vazões (30, 60 e 100 L/h). Considerou-se dois diâmetros de lâmpada para reproduzir a configuração experimental do sistema. A discretização foi feita com malhas tetraédricas variando entre 390 000 e 1 200 000 elementos. Quatro modelos de turbulência RANS foram analisados: k-e, k-w, o shear stress transport (SST) e o modelo de tensões de Reynolds (RSM). O campo de velocidades foi validado comparando a DTR com seu levantamento experimental. A próxima etapa foi incluir o mecanismo de degradação de fenol proposto por Edalatmanesh, Dhib e Mehrvar (2008) no modelo em CFD. Trata-se de um modelo cinético baseado em equações dinâmicas para todas as espécies. O campo de radiação foi calculado pelo modelo radial e pela solução da equação de transporte de radiação através do método discrete transfer. As simulações reproduziram dados experimentais abrangendo uma larga gama de concentrações iniciais de fenol, razões molares H2O2/fenol e três potências de emissão das lâmpadas. O campo de velocidades obtido era dependente da vazão: o fluido pode manter movimento helicoidal sobre toda a extensão do reator ou se desenvolver como um escoamento pistonado. O modelo k-e não reproduziu bem o escoamento por não ser adequado para escoamentos rotativos. Os outros modelos geraram curvas de DTR com bom ajuste aos dados experimentais, especialmente o modelo k-w. O desvio médio entre as simulações de degradação de fenol e os dados experimentais é inferior a 8%. Verificou-se que, devido ao escoamento rotativo, os reagentes ficavam concentrados próximos à parede externa e migravam para a região da lâmpada ao longo do reator. A elevada intensidade de radiação na superfície da lâmpada criou uma camada ao seu redor na qual a fotólise do H2O2 ocorreu com grande taxa. Os radicais OH gerados nessa camada eram transportados para a região das paredes por convecção. Isso fez com que a maior parte do fenol fosse atacada na segunda metade do reator e gerou acúmulo do radical próximo à lâmpada na seção de saída do reator, já que o poluente já fora oxidado nessa área. O método discrete transfer previu intensidades de radiação maiores que o modelo radial, e, consequentemente, maior concentração de radicais OH. Os resultados satisfatórios indicam que CFD foi uma ferramenta adequada para analisar este escoamento reativo. / Advanced oxidation processes are a promising technology for degradation of organic compounds resistant to conventional treatments such as phenol. Computational fluid dynamics (CFD) has recently emerged as a powerful tool that allows a deeper understanding of photochemical processes in reactor engineering by solving the coupled momentum, mass and radiation balances. This work aimed to investigate the UV/H2O2 process in an annular photoreactor using CFD and a more realistic kinetic model. A progressive approach was used to develop the CFD reactor model. First, the velocity fields were determined for three volumetric flow rates (30, 60 and 100 L/h). Two lamp diameters were considered to reflect the experimental configuration of the system. Tetrahedral meshes varying form 390,000 to 1,200,000 elements were analyzed to achieve grid independence. For accounting turbulence effects, four RANS models were tested: k-e, k-w, the Shear Stress Transport (SST) and the Reynolds Stress models (RSM). The velocity field was validated through comparison to RTD experimental data. Next step was introducing the mechanism of phenol degradation proposed by Edalatmanesh, Dhib and Mehrvar (2008) into the CFD model. This kinetic model is based on dynamic equations for all species. The fluence rate field was calculated by the radial model and by solving the radiation transport equation with the discrete transfer method. Simulations reproduced experimental data spanning a wide range of initial phenol concentrations, H2O2/phenol molar ratios and three values for lamp power. It was found that the velocity field depends on the volumetric flow rate: either it maintains a swirling motion through the whole reactor or might develop like a plug flow. The k-e model did not represent the RTD data accurately, and the velocity field therefore, since it is not appropriate for swirling flows. The other turbulence models showed good match of RTD, especially the k-w model. Simulations of phenol degradation deviated less than 8% from experimental data. It was possible verified that, due to the swirling inlet effects, reactants got concentrated close to the outer wall and migrated on the lamp direction along the reactor path. High radiation intensities close to the lamp surface created a layer around it where photolysis of H2O2 took place with higher rates. OH radicals were generated in that layer and transported towards the outer wall by convection. This caused most of phenol to be consumed in the second half of the reactor and accumulation of the radical near the lamp and the reactor outlet, since the pollutant in this area was already oxidized. The discrete transfer method predicted higher incident radiation intensity than the radial model, and higher concentrations of OH radicals as a consequence. Satisfactory results indicated that CFD was an appropriate tool for analyzing this reactive flow.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-15052013-184542 |
Date | 14 March 2013 |
Creators | José Carlos Gonçalves Peres |
Contributors | Ardson dos Santos Vianna Junior, José Roberto Nunhez, Marcelo Martins Seckler |
Publisher | Universidade de São Paulo, Engenharia Química, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds