Return to search

Estimations et tests non paramétriques en tomographie quantique homodyne

En optique quantique, la reconstruction de l'état quantique (fonction de Wigner ou matrice de densité infini-dimensionnelle) d'un faisceau de lumière correspond en statistique à un problème inverse trés mal posé. Premièrement, nous proposons des estimateurs de la matrice de densité basés sur les fonctions \textit{pattern} et des estimateurs à noyau de la fonction de Wigner. Nous faisons l'hypothèse que la matrice de densité inconnue appartient à une classe non paramétrique définie en accord avec les exemples étudiés par les physiciens. Nous en déduisons pour la fonction de Wigner associée à cette matrice des propriétés de décroissance rapide et de régularité. Deuxièmement, nous estimons une fonctionnelle quadratique de la fonction de Wigner par une U-statistique d'ordre deux sur une classe plus large. Cette fonctionnelle peut être vue comme une indication sur la pureté de l'état quantique considéré. Nous en déduisons un estimateur adaptatif aux paramètres de régularité de la fonction de Wigner. La dernière partie de ce manuscrit est consacrée au problème de test d'adéquation à la matrice de densité. Cette procédure est construite à partir d'un estimateur de type projection sur les fonctions \textit{pattern}. Nous étudions les bornes supérieures de type minimax de toutes ces procédures. Les procédures d'estimation de la matrice de densité et de test d'adéquation à une matrice de densité sont implémentées et leurs performances numériques sont étudiées.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00351294
Date09 December 2008
CreatorsMéziani, Katia
PublisherUniversité Paris-Diderot - Paris VII
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0028 seconds