L'intégration tridimensionnels (3D) ont été couronnés de succès dans les dispositifs traditionnels pour augmenter la densité logique et réduire les distances de mouvement des données. Il résout les limites fondamentales de la mise à l'échelle, par ex. retard croissant dans les interconnexions, les coûts de développement et la variabilité. La plupart des périphériques de mémoire livrés aujourd'hui comportent une forme d'empilage de puce. Mais en raison des limites de dissipation de puissance des circuits intégrés, la fréquence de fonctionnement du MPU d'aujourd'hui a été limitée à quelques GHz. Le but de la thèse est de fournir une méthode de conception globale pour le circuit intégré 3D dans le domaine électrique, thermique, électrothermique et aussi le bruit. À cette fin, la question de recherche est la suivante: Comment réaliser la conception 3D IC, comment gérer VLS 3D IC et comment résoudre les problèmes thermiques dans le CI 3D. Dans ce contexte, les méthodes de simulation pour le substrat et également la connectivité relative (TSV, RDL, Micro strip et circuits intégrés dans le substrat) sont proposées. Afin de satisfaire la demande de recherche, un 3D-TLE et une impédance de substrat sont programmés dans Matlab, qui peut automatiquement extraire de tous les contacts; impédance, de forme arbitraire et de matière arbitraire. L'extracteur est compatible à 100% avec le simulateur de cœur SPICE et vérifié avec les résultats de mesure et les résultats de simulation FEM. Et comme pour une démo, une fréquence de 26 GHz et un filtre RF de bande passante 2GHz sont proposés dans ce travail. Un autre simulateur électrothermique est également programmé et vérifié avec ADS. En tant que solution à la dissipation thermique locale, le caloduc plat est proposé comme composant potentiel. Le modèle caloduc est vérifié avec une simulation FEM. La méthode d'analyse du bruit des substrats et les méthodes de calcul de électriques et thermo-mécanique KOZ sont également présentées. / Three Dimensional (3D) Integration and Packaging has been successful in mainstream devices to increase logic density and to reduce data movement distances. It solves the fundamental limits of scaling e.g. increasing delay in interconnections, development costs and variability. Most memory devices shipped today have some form of chip-stacking involved. But because of the power dissipation limits of ICs, today’s MPU’s operating frequency has been limited to a few GHz. The aim of the thesis is to provide a global design method for the 3D integrated circuit in electrical, thermal, electro-thermal and also noise field. To this end, the research question is as follows: How to realize the 3D IC design, how to manage VLS 3D IC and how to solve the thermal issues in the 3D IC. In this context, the simulation methods for substrate and also relative connectivity (TSV, RDL, Micro strip and circuits embedded into the substrate) are proposed. In order to satisfy the research demand, a 3D-TLE and a substrate impedance are programmed in Matlab, which can automatically extract from any contacts; impedance, of arbitrary shape and arbitrary material. The extractor is 100% compatible with SPICE core simulator, and verified with measurement results and FEM simulation results. And as for a demo, a 26 GHz frequency and 2GHz bandwidth RF filter is propose in this work. Another electro-thermal simulator is also programmed and verified with ADS. As a solution to the local heat dissipation, flat heat pipe (FHP) is proposed as a prospective component. The heat-pipe model is verified with FEM simulation. The substrates noise analysis method and electrical and thermos-mechanical keep-out-of-zone (KOZ) calculation methods are also presented.
Identifer | oai:union.ndltd.org:theses.fr/2018LYSEI042 |
Date | 16 May 2018 |
Creators | Ma, Yue |
Contributors | Lyon, Gontrand, Christian |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds