Return to search

Influência do teor de silício em filmes finos de nitreto de zircônio depositados por magnetron sputtering reativo / Influence of silicon content in zirconium nitride thin films deposited by reactive magnetron sputtering

Zr-Si-N thin films were deposited by reactive magnetron sputtering to study silicon
influence in the structure, morphology and properties such as hardness and oxidation
resistance. Six thin films with silicon concentrations from 2.8 to 14.9 at.% were
selected. Thin films morphology shows that there are no columnar grains, structure that
is commonly observed in films deposited by sputtering. It was identified amorphous and
crystalline areas in films microstructure, creating a structure composed by crystalline
grains embedded in an amorphous phase, which were characterized by EDS as Zr and Si
rich areas, respectively. XRD results indicate ZrN peaks intensity reduction and a
broadening increase due silicon nitride segregation to grain boundaries, which is
responsible for grain size reduction, that was calculated by Scherrer and reached
magnitudes lower than 10 nm. XRD peaks displacement are observed for all samples
and it can be explained due formation of a solid solution in which Si replaces Zr atoms
in ZrN crystal lattice and due a strong interface between crystalline phase and
amorphous one. XPS data reinforce the presence of compounds like ZrN and Si3N4 and
it is also possible to infer the formation of a solid solution of Si in ZrN lattice.
Oxidation tests were performed at temperatures in the range of 500°C to 1100°C. ZrN
film is almost fully oxidized at 500°C, while films with high silicon content maintain
ZrN grains stable at 700°C. When oxidized, ZrN films form monoclinic ZrO2 phase,
but, in films with silicon addition, the stable phase is the tetragonal one. This happens
due ZrN grain size reduction, because tetragonal phase has the lowest surface energy.
Oxidation tests results confirm that there is a mechanism acting as diffusion barrier in
films, preventing grains coalescence and oxygen diffusion into film structure. This
mechanism is a direct consequence of silicon segregation process to grain boundaries,
which ensures the formation of a nanostructure composed of ZrN grains embedded by
an amorphous Si3N4 layer (nc-ZrN/a-Si3N4), allowing oxidation resistance improvement
in at least 200°C. / Filmes finos de Zr-Si-N foram depositados por magnetron sputerring reativo para
estudar a influência do teor de silício na estrutura, morfologia e propriedades como
dureza e resistência a oxidação. Para tal, foram selecionados seis filmes com teor de Si
entre 2,8 e 14,9 at.%. A morfologia demonstra que a estrutura colunar característica dos
filmes depositados por sputtering não existe. A estrutura é composta por áreas
cristalinas e outras amorfas, na qual os grãos cristalinos estão envolvidos pela fase
amorfa, sendo que EDS detectou que estas fases são ricas em Zr e Si, respectivamente.
Há redução de intensidade e alargamento dos picos de difração do ZrN, efeito
provocado pela segregação do Si3N4 para região dos contornos, fato que propicia a
redução do tamanho de grão, o qual foi calculado por Scherrer e atinge magnitude
inferior a 10 nm. Os picos do DRX estão deslocados, fato justificado pela formação de
uma solução sólida na qual o Si substituiu o Zr no reticulado do ZrN e pela forte
interface formada entre as fases cristalina e amorfa. Dados de XPS reforçam a formação
de uma estrutura bifásica de ZrN e Si3N4 e mostra indícios de que há uma solução sólida
de Si no ZrN. Os ensaios de oxidação foram realizados em temperaturas de 500°C até
1100°C. O filme de ZrN praticamente se oxida a 500°C, enquanto nos filmes com altos
teores de silício os grãos de ZrN se mantém estáveis até 700°C. Quando oxidado, os
filmes de ZrN formam predominantemente ZrO2 na fase monoclínica, mas, nos filmes
com adição de Si há a inversão para a fase tetragonal. Tal fato é fruto da redução do
tamanho de grão, pois a fase tetragonal possui menor energia de superfície. Tais
resultados ratificam que existe mecanismo atuando como barreira a difusão, o qual
impede a coalescência dos grãos e a difusão do oxigênio. Este mecanismo é resultado
do processo de segregação do silício para os contornos, o qual assegura a formação da
nanoestrutura composta de grãos de ZrN embebidos por camada amorfa de Si3N4 (nc-
ZrN/a-Si3N4) e permite aprimorar a resistência a oxidação em pelo menos 200°C.

Identiferoai:union.ndltd.org:IBICT/oai:ri.ufs.br:riufs/3481
Date19 March 2016
CreatorsFreitas, Flávio Gustavo Ribeiro
ContributorsTentardini, Eduardo Kirinus
PublisherUniversidade Federal de Sergipe, Pós-Graduação em Ciência e Engenharia de Materiais, UFS, Brasil
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Repositório Institucional da UFS, instname:Universidade Federal de Sergipe, instacron:UFS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0036 seconds