Dyson-Schwinger-Gleichungen sind Fixpunktgleichungen, die in der Quantenfeldtheorie auftauchen. Obwohl es bekannt ist, wie die Kombinatorik vor der Anwendung von Feynman-Regeln aussieht, war die Kombinatorik der resultierenden analytischen Dyson-Schwinger-Gleichungen bisher unbekannt. Wir verallgemeinern die Arbeiten von Yeats et.al. auf diesem Gebiet zu einer Klasse von unendlich vielen Dyson-Schwinger-Gleichungen mit Hilfe von Sehnen-Diagrammen. / In quantum field theory, Dyson-Schwinger equations are fixed-point equations that come from self insertion properties of Feynman graphs. While the combinatorics of these are well understood, the combinatorics are still mysterious after applying the Feynman rules. We generalize the work of Yeats et.al. in this field to an infinite number of Dyson-Schwinger equations with the help of chord diagrams.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/18244 |
Date | 13 September 2016 |
Creators | Hihn, Markus |
Contributors | Kreimer, Dirk, DeVos, Matthew, Foissy, Loïc |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung, http://creativecommons.org/licenses/by-nc/3.0/de/ |
Page generated in 0.0023 seconds