Spelling suggestions: "subject:"dysonschwinger equations"" "subject:"torsionsschwinger1 equations""
1 |
Nonperturbative propagators in axial gauge QCDGentles, Andrew James January 1996 (has links)
No description available.
|
2 |
Aspects of Non-perturbative QCD FOR Meson PhysicsNguyen, Trang Thi 11 March 2010 (has links)
No description available.
|
3 |
Aspects of Non-Perturbative QCD for Hadron PhysicsBhagwat, Mandar S. 18 April 2005 (has links)
No description available.
|
4 |
The generalized chord diagram expansionHihn, Markus 13 September 2016 (has links)
Dyson-Schwinger-Gleichungen sind Fixpunktgleichungen, die in der Quantenfeldtheorie auftauchen. Obwohl es bekannt ist, wie die Kombinatorik vor der Anwendung von Feynman-Regeln aussieht, war die Kombinatorik der resultierenden analytischen Dyson-Schwinger-Gleichungen bisher unbekannt. Wir verallgemeinern die Arbeiten von Yeats et.al. auf diesem Gebiet zu einer Klasse von unendlich vielen Dyson-Schwinger-Gleichungen mit Hilfe von Sehnen-Diagrammen. / In quantum field theory, Dyson-Schwinger equations are fixed-point equations that come from self insertion properties of Feynman graphs. While the combinatorics of these are well understood, the combinatorics are still mysterious after applying the Feynman rules. We generalize the work of Yeats et.al. in this field to an infinite number of Dyson-Schwinger equations with the help of chord diagrams.
|
5 |
Haag's theorem in renormalisable quantum field theoriesKlaczynski, Lutz 04 March 2016 (has links)
Wir betrachten eine Reihe von Trivialitäts- resultaten und No-Go-Theoremen aus der Axiomatischen Quantenfeldtheorie. Von besonderem Interesse ist Haags Theorem. Im Wesentlichen sagt es aus, dass der unitäre Intertwiner des Wechselwirkungsbildes nicht existiert oder trivial ist. Als wichtigste Voraussetzung von Haags Theorem arbeiten wir die unitäre Äquivalenz heraus und unterziehen die kanonische Störungstheorie skalarer Felder einer Kritik um zu argumentieren, dass die kanonisch renormierte Quantenfeldtheorie Haags Theorem umgeht, da sie genau diese Bedingung nicht erfüllt. Der Hopfalgebraische Zugang zur perturbativen Quantenfeldtheorie bietet die Möglichkeit, Dyson-Schwinger-und Renormierungsgruppengleichungen mathematisch sauber herzuleiten, wenn auch mit rein kombinatorischem Ausgangspunkt. Wir präsentieren eine Beschreibung dieser Methode und diskutieren eine gewöhnliche Differentialgleichung für die anomale Dimension des Photons. Eine Spielzeugmodellversion dieser Gleichung lässt sich exakt lösen; ihre Lösung weist eine interessante nichtstörunsgtheoretische Eigenschaft auf, deren Auswirkungen auf die laufende Kopplung und die Selbstenergie des Photons wir untersuchen. Solche nichtperturbativen Beiträge mögen die Existenz eines Landau-Pols ausschliessen, ein Sachverhalt, den wir ebenfalls diskutieren. Unter der Arbeitshypothese, dass die anomale Dimension eines Quantenfeldes in die Klasse der resurgenten Funktionen fällt, studieren wir, welche Bedingungen die Dyson-Schwinger-und Renormierungsgruppengleichungen an ihre Transreihe stellen. Wir stellen fest, dass diese unter bestimmten Bedingungen kodieren, wie der perturbative Sektor den nichtperturbativen vollständig determiniert. / We review a package of triviality results and no-go theorems in axiomatic quantum field theory. Of particular interest is Haag''s theorem. It essentially says that the unitary intertwiner of the interaction picture does not exist unless it is trivial. We single out unitary equivalence as the most salient provision of Haag''s theorem and critique canonical perturbation theory for scalar fields to argue that canonically renormalised quantum field theory bypasses Haag''s theorem by violating this very assumption. The Hopf-algebraic approach to perturbative quantum field theory allows us to derive Dyson-Schwinger equations and the Callan-Symanzik equation in a mathematically sound way, albeit starting with a purely combinatorial setting. We present a pedagogical account of this method and discuss an ordinary differential equation for the anomalous dimension of the photon. A toy model version of this equation can be solved exactly; its solution exhibits an interesting nonperturbative feature whose effect on the running coupling and the self-energy of the photon we investigate. Such nonperturbative contributions may exclude the existence of a Landau pole, an issue that we also discuss. On the working hypothesis that the anomalous dimension of a quantum field falls into the class of resurgent functions, we study what conditions Dyson-Schwinger and renormalisation group equations impose on its resurgent transseries. We find that under certain conditions, they encode how the perturbative sector determines the nonperturbative one completely.
|
6 |
Quark Dynamics and Constituent Masses in Heavy Quark SystemsSouchlas, Nicholas 20 July 2009 (has links)
No description available.
|
7 |
Generalised Parton Distributions : from phenomenological approaches to Dyson-Schwinger equations / Étude des distributions de partons généralisées, approches phénoménologiques et équations de Dyson-SchwingerMezrag, Cédric 16 July 2015 (has links)
Cette étude est consacrée aux distributions de partons généralisées (GPDs, de l'anglais Generalised Parton Distributions). Dans un premier temps, les principales propriétés des GPDs sont rappelées. On insiste notamment sur les propriétés dites de support et sur la polynomialité. Cette dernière est automatiquement respectée lorsque l'on modélise les GPDs au travers des doubles distributions (DDs), les GPDs s'écrivant comme la transformée de Radon des DDs.Dans le cas scalaire, deux DDs, notées F et G, sont nécessaires pour décrire la GPD H. Du fait de la relation intégrale existant entre H d'un côté, et F et G de l'autre, F et G sont définies de manière ambiguë. Cette ambiguïté est exploitée dans le présent travail afin de développer une nouvelle paramétrisation phénoménologique. Utilisant l'Ansatz de Radyushkin, il est possible d'obtenir un modèle réaliste de GPD, et de le comparer aux données expérimentales disponibles. Dans le cas présent, deux types de modèles, l'un négligeant la GPD E, l'autre en tenant compte, sont comparés aux données de diffusion Compton profondément virtuelle (DVCS) de la collaboration Hall A au Jeffeson Laboratory (JLab). Dans le premier cas, on observe une plus grande flexibilité de la paramétrisation par rapport aux précédentes, ce qui permet une meilleure comparaison aux données sur les sections efficaces indépendantes de l'hélicité du faisceau. Dans le second cas, seule la GPD E est profondément modifiée. De ce fait la comparaison aux données change peu par rapport aux modèles précédents. Seules des données plus sensibles à E permettront de trancher entre les paramétrisations.Afin de dépasser les paramétrisations phénoménologiques, un premier pas a été fait vers la description dynamique des hadrons. En utilisant les équations de Dyson-Schwinger, il a été possible de calculer analytiquement la GPD de pion dans le cadre de l'approximation du diagramme triangle. La comparaison aux données expérimentales disponibles (facteur de forme et PDF) s'est révélée très bonne. Il est également possible de montrer que l'approximation du diagramme triangle permet de retrouver le théorème de pion mou. Néanmoins, ce premier modèle ne respecte pas l'ensemble des propriétés des GPDs. Elle viole la symétrie d'échange x, 1-x, et par conséquent des termes supplémentaires, précédemment négligés, sont pris en compte. On peut ainsi obtenir la densité de probabilité de trouver un quark portant une fraction d'impulsion x dans le plan transverse. Des perspectives de calculs sur le cône de lumière sont présentés dans le dernier chapitre. / This study is devoted to generalised parton distributions (GPDs). First, the main properties of GPDs are given to the reader. One can stress the so-called support properties and the polynomiality property. The latter is automatically fulfiled when modeling GPDs from double distributions (DDs), GPDs being considered as the Radon transform of DDs. In the scalar case, two DDs denoted by F and G are required to describe the GPD H. Due to the integral relation existing between H on one hand, and F and G on the other hand, F and G are not defnied unambiguously. This ambiguity is exploited in the present work in order to develop a new phenomenological parametrisation. Using the Radyushkin Ansatz, it is then possible get a realistic model of GPDs, and to compare it with available experimental data. In the present case, two types of models, one neglecting the GPD E, the other taking it into account are compared with the Jlab Hall A DVCS data. In the former cae, one can notice a better flexibility allowing to better reproduced the beam-helicity independent cross sections. In the latter one, only the GPD E is deeply modified, and thus the comparison with available data does not change significantly with respect to previous parametrisations. Only data more sensitive to E will allow one to selet the most relevant parametrisation.In order to go beyond phenomenological parametrisations, a first step has been done toward a dynamical description of hadron structure. Using the Dyson-Schwinger equations, it has been possible to compute analytically the pion GPD within the triangle diagram approximation. The comparison with available data (Form factor and PDF) appears to be very good. Nevertheless, this first model does not fulfil all the required properties. Especially the soft pion theorem, which corresponds to a specific kinematical limit. It has been shown in this work that this is due to the violation of the Axial-Vector Ward-Takahashi identity, and that the triangle approximation is sufficient to ensure the sof pion theorem. Still it violates the exchange symmetry x, 1-x, and thus additional terms, previously neglected, are taken into account. It is then possible to compute the probability density to find a quark at a given position in the transverse plan carrying a given momentum fraction. Finally, perspective on lightcone computations are given in the last chapter.
|
Page generated in 0.1262 seconds