• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Haag's theorem in renormalisable quantum field theories

Klaczynski, Lutz 04 March 2016 (has links)
Wir betrachten eine Reihe von Trivialitäts- resultaten und No-Go-Theoremen aus der Axiomatischen Quantenfeldtheorie. Von besonderem Interesse ist Haags Theorem. Im Wesentlichen sagt es aus, dass der unitäre Intertwiner des Wechselwirkungsbildes nicht existiert oder trivial ist. Als wichtigste Voraussetzung von Haags Theorem arbeiten wir die unitäre Äquivalenz heraus und unterziehen die kanonische Störungstheorie skalarer Felder einer Kritik um zu argumentieren, dass die kanonisch renormierte Quantenfeldtheorie Haags Theorem umgeht, da sie genau diese Bedingung nicht erfüllt. Der Hopfalgebraische Zugang zur perturbativen Quantenfeldtheorie bietet die Möglichkeit, Dyson-Schwinger-und Renormierungsgruppengleichungen mathematisch sauber herzuleiten, wenn auch mit rein kombinatorischem Ausgangspunkt. Wir präsentieren eine Beschreibung dieser Methode und diskutieren eine gewöhnliche Differentialgleichung für die anomale Dimension des Photons. Eine Spielzeugmodellversion dieser Gleichung lässt sich exakt lösen; ihre Lösung weist eine interessante nichtstörunsgtheoretische Eigenschaft auf, deren Auswirkungen auf die laufende Kopplung und die Selbstenergie des Photons wir untersuchen. Solche nichtperturbativen Beiträge mögen die Existenz eines Landau-Pols ausschliessen, ein Sachverhalt, den wir ebenfalls diskutieren. Unter der Arbeitshypothese, dass die anomale Dimension eines Quantenfeldes in die Klasse der resurgenten Funktionen fällt, studieren wir, welche Bedingungen die Dyson-Schwinger-und Renormierungsgruppengleichungen an ihre Transreihe stellen. Wir stellen fest, dass diese unter bestimmten Bedingungen kodieren, wie der perturbative Sektor den nichtperturbativen vollständig determiniert. / We review a package of triviality results and no-go theorems in axiomatic quantum field theory. Of particular interest is Haag''s theorem. It essentially says that the unitary intertwiner of the interaction picture does not exist unless it is trivial. We single out unitary equivalence as the most salient provision of Haag''s theorem and critique canonical perturbation theory for scalar fields to argue that canonically renormalised quantum field theory bypasses Haag''s theorem by violating this very assumption. The Hopf-algebraic approach to perturbative quantum field theory allows us to derive Dyson-Schwinger equations and the Callan-Symanzik equation in a mathematically sound way, albeit starting with a purely combinatorial setting. We present a pedagogical account of this method and discuss an ordinary differential equation for the anomalous dimension of the photon. A toy model version of this equation can be solved exactly; its solution exhibits an interesting nonperturbative feature whose effect on the running coupling and the self-energy of the photon we investigate. Such nonperturbative contributions may exclude the existence of a Landau pole, an issue that we also discuss. On the working hypothesis that the anomalous dimension of a quantum field falls into the class of resurgent functions, we study what conditions Dyson-Schwinger and renormalisation group equations impose on its resurgent transseries. We find that under certain conditions, they encode how the perturbative sector determines the nonperturbative one completely.
2

Renormalization group flow of scalar models in gravity

Guarnieri, Filippo 15 May 2014 (has links)
In dieser Doktorarbeit werden wir das Renormierungsproblem von Gravitationstheorien im Kontext der Renormierungsgruppe (RG) unter Anwendung von perturbativen und nicht-perturbativen Methoden untersuchen. Insbesondere werden wir uns auf verschiedene Gravitationsmodelle und Näherungen konzentrieren, in welchen die zentrale Rolle von einem skalaren Freiheitsgrad eingenommen wird. Wir konzentrieren uns besonders auf zwei Ansätze für Quantengravitation, die in letzter Zeit viel Aufmerksamkeit erhalten haben, nämlich den asymptotisch sicheren Fall der Gravitation und die Hořava-Lifshitz Quantengravitation. Das Prinzip der Asymptotischen Sicherheit beruht auf der Annahme, dass das hochenergetische Gravitationsregime von einem nicht-Gaußschen Fixpunkt bestimmt wird, der nicht-perturbative Renormierung und Endlichkeit der Korrelationsfunktionen sicherstellt. Wir werden die Existenz eines solchen nicht-trivialen Fixpunktes mit Hilfe der funktionalen Renormierungsgruppe untersuchen. Insbesondere werden wir den einzigen konformen Freiheitsgrad quantisieren. Die Frage nach der Existenz eines nicht-Gaußschen Fixpunktes in einem unendlich- dimensionalen Parameterraum, das heißt für eine generische f(R)-Theorie, kann jedoch nicht mit einem solchen konform reduzierten Model analysiert werden. Deshalb werden wir es untersuchen, indem wir eine skalare dynamische Äquivalentstheorie, das heißt eine generische Brans-Dicke Theorie in der lokal-Potential Näherung mit ω = 0, quantisieren. Schließlich werden wir mittels einer perturbativen RG Methode die asymptotische Freiheit der Hořava-Lifshitz Gravitationstheorie analysieren. Diese Gravitationstheorie beruht auf der Entstehung einer Anisotropie zwischen Raum und Zeit, die Newtons Konstante zu einer marginalen Koppelung werden lässt und explizit die Unitarität bewahrt. Insbesondere werden wir die Einschleifenkorrektur in 2+1 Dimensionen berechnen, indem wir nur den konformen Freiheitsgrad quantisieren. / In this Ph.D. thesis we will study the issue of renormalizability of gravitation in the context of the renormalization group (RG), employing both perturbative and non-perturbative techniques. In particular, we will focus on different gravitational models and approximations in which a central role is played by a scalar degree of freedom, since their RG flow is easier to analyze. We restrict our interest in particular to two quantum gravity approaches that have gained a lot of attention recently, namely the asymptotic safety scenario for gravity and the Hořava-Lifshitz quantum gravity. In the so-called asymptotic safety conjecture the high energy regime of gravity is controlled by a non-Gaussian fixed point which ensures non-perturbative renormalizability and finiteness of the correlation functions. We will then investigate the existence of such a non trivial fixed point using the functional renormalization group, a continuum version of the non-perturbative Wilson’s renormalization group. In particular we will quantize the sole conformal degree of freedom, which is an approximation that has been shown to lead to a qualitatively correct picture. The question of the existence of a non-Gaussian fixed point in an infinite-dimensional parameter space, that is for a generic f(R) theory, cannot however be studied using such a conformally reduced model. Hence we will study it by quantizing a dynamically equivalent scalar-tensor theory, i.e. a generic Brans-Dicke theory with ω = 0 in the local potential approximation. Finally, we will investigate, using a perturbative RG scheme, the asymptotic freedom of the Hořava-Lifshitz gravity, that is an approach based on the emergence of an anisotropy between space and time which lifts the Newton’s constant to a marginal coupling and explicitly preserves unitarity. In particular we will evaluate the one-loop correction in 2+1 dimensions quantizing only the conformal degree of freedom.
3

Renormalisation in perturbative quantum gravity

Rodigast, Andreas 28 August 2012 (has links)
In dieser Arbeit berechnen wir die gravitativen Ein-Schleifen-Korrekturen zu den Propagatoren und Wechselwirkungen der Felder des Standardmodells der Elementarteilchenphysik. Wir betrachten hierzu ein höherdimensionales brane-world-Modell: Wärend die Gravitonen, die Austauchteilchen der Gravitationswechselwirkung, in der gesamten D-dimensionalen Raumzeit propagieren können, sind die Materiefelder an eine d-dimensionale Untermanigfaltigkeit (brane) gebunden. Um die divergenten Anteile der Ein-Schleifen-Diagramme zu bestimmen, entwickeln wir ein neues Regularisierungschema welches einerseits die Wardidentitäten der Yang-Mills-Theorie respektiert anderseits sensitiv für potenzartige Divergenzen ist. Wir berechnen die gravitativen Beiträge zu den beta-Funktionen der Yang-Mills-Eichtheorie, der quartischen Selbst-Wechselwirkung skalarer Felder und der Yukawa-Wechselwirkung zwischen Skalaren und Fermionen. Im physikalisch besonders interessanten Fall einer vier-dimensionalen Materie-brane verschwinden die gravitativen Beiträge zum Laufen der Yang-Mills-Kopplungskonstante. Die führenden Beiträge zum Laufen der anderen beiden Kopplungskonstanten sind positiv. Diese Ergebnisse sind unabhängig von der Anzahl der Extradimensionen in denen die Gravitonen propagieren können. Des Weiteren bestimmen wir alle gravitationsinduzierten Ein-Schleifen-Konterterme mit höheren kovarianten Ableitungen für skalare Felder, Dirac-Fermionen und Eichbosonen. Ein Vergleich dieser Konterterme mit den höheren Ableitungsoperatoren des Lee-Wick-Standardmodells zeigt, dass die Gravitationskorrekturen nicht auf letzte beschränkt sind. Eine Beziehung zwischen Quantengravitation und dem Lee-Wick-Standardmodell besteht somit nicht. / In this thesis, we derive the gravitational one-loop corrections to the propagators and interactions of the Standard Model field. We consider a higher dimensional brane world scenario: Here, gravitons can propagate in the whole D dimensional space-time whereas the matter fields are confined to a d dimensional sub-manifold (brane). In order to determine the divergent part of the one-loop diagrams, we develop a new regularisation scheme which is both sensitive for polynomial divergences and respects the Ward identities of the Yang-Mills theory. We calculate the gravitational contributions to the beta functions of non-Abelian gauge theories, the quartic scalar self-interaction and the Yukawa coupling between scalars and fermions. In the physically interesting case of a four dimensional matter brane, the gravitational contributions to the running of the Yang-Mills coupling constant vanish. The leading contributions to the other two couplings are positive. These results do not depend on the number of extra dimensions. We further compute the gravitationally induced one-loop counterterms with higher covariant derivatives for scalars, Dirac fermions and gauge bosons. In is shown that these counterterms do not coincide with the higher derivative terms in the Lee-Wick standard model. A possible connection between quantum gravity and the latter cannot be inferred.

Page generated in 0.027 seconds