This master thesis studies the recycling prospects of textiles. The textile industry contributes negatively to the global environmentthrough the release of greenhouse gases and consumption of resources. In order to achieve a circular textile industry, textiles must be recyclable by both chemical and mechanical means. Here, the focus is on mechanical extraction of staple fibres, particularly cotton, for reentry into yarn production. Experiments show that used, but undamaged, cotton sateen and cotton twill responds differently to abrasion with stochastic surfaces. Previous studies on the conventional shredding processes have shown positive impact from lubricants on extracted fibre lengths, by reducing inter-fibre friction. In the present study on abrasion, variables such as alignment of the weave pattern, lubrication and load are shown to have little to no impact on extracted fibre length, but notable effects on overall fibre quality. These analyses are supported by manual length assessment, electron micrographs and tensile tests using load cells. Furthermore, simple tests and observations on structured diamond surfaces constructed through chemical vapor deposition are promising for mechanical fibre release directly from a woven fabric. Suggestions are made on continued research in this field.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-414569 |
Date | January 2020 |
Creators | Johansson, Ludvig |
Publisher | Uppsala universitet, Tillämpad materialvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC Q, 1401-5773 ; 20009 |
Page generated in 0.0023 seconds