[ES] La neurociencia es un campo que abarca muchas especialidades. El objetivo de esta tesis es subsanar algunas carencias tecnológicas que existen en los métodos actuales de experimentación animal en neurociencia. En esta tesis, se presentan seis proyectos, que tendrán como objetivo mejorar el "Principio de las tres R", el cual fue enunciado por los biólogos ingleses W. M. S. Russell y R. L. Burch, durante la experimentación animal.
El comportamiento es uno de los aspectos más importantes de la vida animal. Depende de los vínculos entre los animales, sus sistemas nerviosos y sus entornos. Para estudiar el comportamiento de los animales de laboratorio, se necesitan varias herramientas, pero una herramienta de seguimiento es esencial para llevar a cabo un estudio de comportamiento exhaustivo. Varias herramientas de seguimiento visual están actualmente disponibles. Sin embargo, todas tienen algunos inconvenientes. Por ejemplo, en una situación en la que un animal está dentro de una madriguera o cerca de otros animales, las cámaras de rastreo (tracking) no siempre pueden detectar la ubicación precisa o el movimiento del animal. Por esta razón, los entornos enriquecidos para intentar recrear el hábitat natural de los animales en experimentación no pueden utilizarse, ya que los datos recopilados son insuficientes/inexactos.
Con la finalidad de mejorar los experimentos de tracking RFID Assisted Tracking Tile (RATT) es presentado en esta tesis. RATT es un sistema de seguimiento basado en tecnología de identificación pasiva de radiofrecuencia (RFID) y está compuesto por baldosas electrónicas con las que se puede construir una gran superficie, sobre la cual los animales pueden moverse libremente. Esto permite la identificación más precisa de los animales, así como el seguimiento de sus movimientos. Este sistema, que también se puede combinar con un sistema de seguimiento con cámaras, allana el camino para estudios completos de comportamiento en entornos enriquecidos.
Dada la capacidad de rastrear animales y, por lo tanto, realizar experimentos de comportamiento exhaustivos, es posible observar cómo se comportan los sujetos desde un punto de vista externo. Sin embargo, si queremos comprender lo que sucede en el cerebro de estos sujetos, es necesario aplicar otras técnicas de análisis, por ejemplo, el estudio de señales dependientes del nivel de oxígeno en la sangre (BOLD, por sus siglas en inglés).
Las señales BOLD se basan en las respuestas vasculares a la activación neuronal y se utilizan ampliamente en estudios de investigación clínicos y preclínicos. En entornos preclínicos, los animales suelen ser anestesiados. Sin embargo, los anestésicos causan cambios en la fisiología de los animales, p. Ej. hipotermia, y esto tiene el potencial de alterar las señales funcionales de MRI (fMRI). Para evitar la hipotermia en roedores anestesiados, se presenta TherMouseDuino. Este es un sistema de control automático de temperatura de código abierto, que reduce las fluctuaciones de la temperatura, lo que proporciona condiciones sólidas para realizar experimentos de resonancia magnética funcional.
En los cursos de biología y neurociencia, la anatomía del cerebro se enseña generalmente utilizando imágenes de resonancia magnética (IRM) o secciones histológicas de diferentes planos. Estos muestran las áreas macroscópicas más importantes en el cerebro de un animal. Sin embargo, este método no es dinámico ni intuitivo. En esta tesis se presenta un cerebro de rata impreso en 3D con fines educativos. La manipulación manual de la estructura, facilitada por la ampliación de sus dimensiones, junto con la capacidad de desmontar el "cerebro" en algunas de sus partes principales, facilita la comprensión de la organización 3D del sistema nervioso. Este es un método alternativo y mejorado para enseñar a los estudiantes en general y a los biólogos, en particular, la anatomía del cerebro de rata. / [CA] La neurociència és un camp que abasta moltes especialitats. L'objectiu d'aquesta tesi és esmenar algunes manques tecnològiques que existeixen en els mètodes actuals d'experimentació animal en neurociència. En aquesta tesi, es presenten sis projectes, que tindran com a objectiu millorar el "Principi de les tres R", el qual va ser enunciat pels biòlegs anglesos W. M. S. Russell i R. L. Burch, durant l'experimentació animal.
El comportament és un dels aspectes m'és importants de la vida animal. Depèn dels vincles entre els animals, els seus sistemes nerviosos i els seus entorns. Per estudiar el comportament dels animals de laboratori, es necessiten diverses eines, però` una eina de seguiment és essencial per a dur a terme un estudi de comportament exhaustiu. Diverses eines de seguiment visual estan actualment disponibles. No obstant això, totes tenen alguns inconvenients. Per exemple, en una situació en la qual un animal esta` dins d'un cau o prop d'altres animals, les cambres de rastreig (tracking) no sempre poden detectar la ubicació precisa o el moviment de l'animal. Per aquesta raó, els entorns enriquits per a intentar recrear l'hàbitat natural dels animals en experimentació no poden utilitzar-se, ja que les dades recopilades són insuficients/inexactes.
Amb la finalitat de millorar els experiments de tracking/seguiment RFID Assisted Tracking Tile (RATT) és presentat en aquesta tesi. RATT es un sistema de seguiment basat en tecnologia d'identificació passiva de radiofreqüència (RFID) i esta` compost per rajoles electròniques amb les quals es pot construir una gran superfície, sobre la qual els animals poden moures lliurement. Això permet la identificació més precisa dels animals, així com el seguiment dels seus moviments. Aquest sistema, que també es pot combinar amb un sistema de seguiment amb cambres, aplana el camí per a estudis complets de comportament en entorns enriquits.
Donada la capacitat de rastrejar animals i, per tant, realitzar experiments de comportament exhaustius, és possible observar com es comporten els subjectes des d'un punt de vista extern. No obstant això, si volem comprendre el que succeeix en el cervell d'aquests subjectes, és necessari aplicar altres tècniques d'anàlisis, per exemple, l'estudi de senyals dependents del nivell d'oxigen en la sang (BOLD, per les seues sigles en anglès).
Els senyals BOLD es basen en les respostes vasculars a l'activació neuronal i s'utilitzen àmpliament en estudis d'investigació clínics i preclínics. En entorns preclínics, els animals solen ser anestesiats. No obstant això, els anestèsics causen canvis en la fisiologia de els animals, per exemple hipotèrmia, i això te el potencial d'alterar els senyals funcionals de MRI (fMRI). Per a evitar la hipotèrmia en rosegadors anestesiats, es presenta TherMouseDuino. Aquest és un sistema de control automàtic de temperatura de codi obert, que redueix les fluctuacions de la temperatura, la qual cosa proporciona condicions solides per a realitzar experiments de ressonància magnètica funcional. En els cursos de biologia i neurociència, l'anatomia del cervell s'ensenya generalment utilitzant imatges de ressonància magnètica (IRM) o seccions histològiques de diferents plans. Aquests mostren les àrees macroscòpiques més importants en el cervell de un animal. No obstant això, aquest mètode no és dinàmic ni intuïtiu. En aquesta tesi es presenta un cervell de rata imprès en 3D amb finalitats educatius. La manipulació manual de l'estructura, facilitada per l'ampliació de les seues dimensions, juntament amb la capacitat de desmuntar el "cervell" en algunes de les seues parts principals, facilita la comprensió de l'organització 3D del sistema nerviós. Aquest és un mètode alternatiu i millorat per a ensenyar a els estudiants en general i als biòlegs, en particular, l'anatomia del cervell de rata. / [EN] Neuroscience is a field that covers many specialties. The objective of this thesis is to correct some technological deficiencies that exist in current methods of animal experimentation in neuroscience. In this thesis, six projects are presented, which will aim to improve the "Principle of the three Rs" in animal experimentation enunciated by the English biologists W. M. S. Russell and R. L. Burch.
In the present era of impressive progress in neuroscience, it is still not arguable that a complete understanding of the brain cannot be possible without a comparable understanding of animal behavior. In order to study the behavior of laboratory animals, various tools are needed, being a reliable tracking system one of the most important to follow large populations of individual subjects that interact in complex manners. Several visual tracking tools are currently available. However, they all have some drawbacks. For example, in a situation where an animal is inside a cave, or is in close proximity to other animals, tracking cameras cannot always detect the precise location or movement of the animal. For this reason, environments that have been enriched in order to attempt to recreate the natural habitat of the animals under experiment, cannot be used, as the data gathered is insufficient/inaccurate.
In order to improve the current tracking systems , the RATT is presented. RATT is a tracking system based on passive RFID technology and it is composed of electronic tiles. Using several tiles, a large surface area, on which the animals can move freely, can be built. This enables the more accurate identification of the animals, as well as the tracking of their movements. This system, which can also be combined with a visual tracking system, paves the way for complete behavioral studies in enriched environments.
Given the ability to track animals and thus conduct thorough behavioral experiments, it is possible to observe how the subjects behave from an external viewpoint. However, if we want to understand what is going on in the brains of these subjects, it is necessary to apply other analysis techniques, for example the study of BOLD signals. BOLD signals are based on vascular responses to neuronal activation and are used extensively in clinical and preclinical research studies. In preclinical settings, animals are usually anesthetized. However, anesthetics cause changes in the physiology of the animals, e.g. hypothermia, and this has the potential to disrupt fMRI signals. In order to avoid hypothermia in anesthetized rodents, TherMouseDuino is presented. This is an Open-Source automatic temperature control system, which reduces temperature fluctuations, thus providing robust conditions in which to perform fMRI experiments.
In biology and neuroscience courses, brain anatomy is generally taught using MRI or histological sections of different planes. These show the most important macroscopic areas in an animals' brain. However, this method is neither dynamic nor intuitive. An anatomical 3D printed rat brain with educative purposes is presented in this thesis. Hand manipulation of the structure, facilitated by the scaling up of its dimensions, together with the ability to dismantle the "brain" into some of main its constituent parts, facilitates the understanding of the 3D organization of the nervous system. This is an alternative and improved method for teaching students in general and biologists, in particular, the rat brain anatomy. / This work was supported in part by the Spanish Ministerio de Economía
y Competitividad (MINECO) and FEDER funds under grants BFU2015-64380-C2-2-R (D.M.)
and BFU2015-64380-C2-1-R, by EU Horizon 2020 Program 668863-SyBil-AA grant (S.C.). S.C.
acknowledges financial support from the Spanish State Research Agency, through the “Severo Ochoa”
Programme for Centres of Excellence in R&D (ref. SEV-2013-0317) and by a grant “Ayudas para
la formación de personal investigador (FPI)” from the Vicerrectorado de Investigación, Innovación
y Transferencia of the Universitat Politècnica de València. / Quiñones Colomer, DR. (2019). Developing preclinical devices for neuroscience research in the fields of animal tracking, fMRI acquisition, and 3D histology cutting [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118795
Identifer | oai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/118795 |
Date | 27 March 2019 |
Creators | Quiñones Colomer, Darío Rubén |
Contributors | Canals Gamoneda, Santiago, Moratal Pérez, David, Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica, Ministerio de Economía y Competitividad, European Commission |
Publisher | Universitat Politècnica de València |
Source Sets | Universitat Politècnica de València |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion |
Rights | http://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess |
Relation | info:eu-repo/grantAgreement/EC/H2020/668863/EU/Systems Biology of Alcohol Addiction: Modeling and validating disease state networks in human and animal brains for understanding pathophysiolgy, predicting outcomes and improving therapy/, info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-2-R/ES/ANALISIS DE TEXTURAS EN IMAGEN CEREBRAL MULTIMODAL POR RESONANCIA MAGNETICA PARA UNA DETECCION TEMPRANA DE ALTERACIONES EN LA RED Y BIOMARCADORES DE ENFERMEDAD/, info:eu-repo/grantAgreement/MINECO//BFU2015-64380-C2-1-R/ES/TRATAR LA ENFERMEDAD RESINTONIZANDO LA DINAMICA DE LAS REDES CEREBRALES/, info:eu-repo/grantAgreement/MINECO//SEV-2013-0317/ES/-/ |
Page generated in 0.0063 seconds