De l’organisme unicellulaire aux organismes multicellulaires complexes, la spécification cellulaires est un aspect fondamental de la biologie de l'adaptation et du développement. Les cellules souches pluripotentes (CSP) telles que les embryonnaires (CSE) fournissent un modèle approprié pour étudier les mécanismes de régulation et la spécification du sort des cellules chez les mammifères. Les ESC de souris sont connus pour être de nature hétérogènes et sont rapportées comme étant composées de multiples états de cellules souches ressemblant à des stades distincts du développement embryonnaire précoce, tels que totipotentes, pluripotentes, préparées et endoderme primitif. Malgré des études approfondies sur les CSE, les mécanismes moléculaires régulant leur hétérogénéité et l'état totipotent, en particulier, ne sont pas bien compris.
Le travail présenté dans cette thèse utilise les CSE de souris comme modèle intéressant pour déterminer les mécanismes de signalisation et de régulation génique qui conduisent à l'hétérogénéité cellulaire et l'état cellulaire totipotent des CSE.
Dans une première étude, nous avons utilisé la cytométrie en flux de masse pour analyser simultanément de multiples protéines régulatrices des cellules souches, en mettant l'accent sur les facteurs de transcription clés, les protéines de signalisation et les modificateurs de la chromatine qui régissent les CSE de souris. Les données de cytométrie en flux de masse ont révélé des variations dans les niveaux protéiques cellulaires individuels des régulateurs des cellules souches et ont souligné la vaste coactivation des voies de signalisation cellulaire dans des conditions de culture définies des CSE. De plus, l'application de la cytométrie en flux de masse a facilité l'identification d'états cellulaires distincts et de leurs caractéristiques moléculaires au sein des CSE, offrant des aperçus de leurs variations selon différentes conditions de culture, validant ainsi la présence d'hétérogénéité cellulaire dans les CSE de souris.
Dans une deuxième étude, nous avons identifié la signalisation du facteur de croissance des os (BMP) comme inducteur de l'état totipotent. Nous avons également constaté que le rôle du BMP dans la totipotence est réprimé par la coactivation des voies FGF, NODAL et WNT. En inhibant ces voies coactivées, nous démontrons l'amélioration de l'induction de cellules totipotentes et la suppression des états préparés et d'endoderme primitif. Nous avons validé les changements d'état cellulaire au niveau cellulaire unique grâce à un séquençage d'ARNm à cellule unique. De plus, nous avons également démontré que les cellules totipotentes reprogrammées in vitro imitent les cellules totipotentes de l'embryon préimplantatoire avec la capacité de générer des blastocystes in vitro (Blastoïdes) et de s'intégrer dans les lignées embryonnaires et extra-embryonnaires chez la souris. Ensemble, ces résultats ont révélé les mécanismes de signalisation du BMP pour réguler à la fois l'état totipotent et l'hétérogénéité des CSE.
Pour la troisième étude, nous avons utilisé les observations clés de nos données de cytométrie en flux de masse (première étude) pour évaluer le rôle des protéines régulatrices clés pour promouvoir l'état cellulaire totipotent. Ici, nous démontrons que NACC1, un régulateur transcriptionnel des CSE, agit également comme un régulateur important des cellules totipotentes. Après avoir identifié NACC1 comme un régulateur potentiel à partir de données de protéines cellulaires à cellule unique et de transcriptome en vrac, nous avons validé sa fonction en utilisant une suppression médiée par CRISPR en combinaison avec des conditions de reprogrammation cellulaire pluripotente à totipotente. Ensuite, nous avons intégré une combinaison d'approches génomiques pour étudier les changements au niveau du système dépendants de NACC1 dans le transcriptome, l'accessibilité à la chromatine et la liaison à l'ADN génomique. Ensemble, ces données ont révélé que NACC1 induit à la fois les programmes d'expression génique codant et de gènes de rétrotransposons pour promouvoir l'état cellulaire totipotent. Enfin, nous avons montré que NACC1 régule les éléments rétrotransposables MERVL-int et MT2_Mm pour moduler l'expression des gènes codants de l'état totipotent.
En conclusion, cette thèse révèle la nature hétérogène des CSE de souris au niveau protéique à cellule unique, élucide le rôle significatif et les mécanismes de la voie de signalisation BMP pour réguler l'état totipotent et l'hétérogénéité des CSE, et dévoile les mécanismes de régulation génique dépendants de NACC1 pour promouvoir l'état totipotent. Ces résultats ouvrent la voie à des études ultérieures visant à comprendre la spécification de l'état des cellules souches et leur transition via la modulation des voies de signalisation / facteurs de transcription. De plus, ces mécanismes peuvent réguler l'état cellulaire totipotent chez l'homme, éclairant l'hétérogénéité cellulaire dans les CSE humaines et dans des contextes pathologiques, tels que le cancer. / From unicellular entities to intricate multicellular organisms, the omnipresent process of cell fate specification is a fundamental aspect of adaptation and developmental biology. Pluripotent stem cells (PSCs) such as embryonic stem cells (ESCs) provide a suitable model to study the regulatory mechanisms and cell fate specification in mammals. Intriguingly, mouse ESCs are known to be heterogenous in nature and are reported to consist of multiple stem cell states resembling distinct stages of early embryogenesis, such as totipotent, pluripotent, primed, and primitive endoderm. Despite extensive study of ESCs, the molecular mechanisms regulating their heterogeneity and the totipotent state in particular are not well understood.
The work presented in this thesis utilizes mouse ESCs as an attractive model to delineate the signaling and gene regulatory mechanisms driving the cellular heterogeneity and the totipotent cell state of ESCs.
In the first study, we utilized mass cytometry (cytometry by time of flight) to concurrently analyse multiple stem cell regulatory proteins, focusing on key transcription factors, signaling proteins, and chromatin modifiers that govern mouse ESCs. Mass cytometry data revealed variations in the single-cell protein levels of stem cell regulators and highlighted the extensive cross-activation of cell signaling pathways across defined culture conditions of ESCs. Furthermore, the application of mass cytometry facilitated the identification of distinct cell states and their molecular features within ESCs, offering insights into their variations across different culture conditions, thereby validating the presence of cellular heterogeneity in mouse ESCs.
In the second study, we identified bone morphogenetic protein (BMP) signaling as an inducer of the totipotent state. We also found that, BMP’s role for totipotency is repressed by the cross-activation of FGF, NODAL, and WNT pathways. Through rational inhibition of these cross-activated pathways, we demonstrate the enhancement in the induction of totipotent cells and suppression of primed and primitive endoderm states. We validated the cell state changes at the single-cell level through single-cell mRNA sequencing. Furthermore, we also demonstrate that the in-vitro reprogrammed totipotent cells mimic the totipotent cells of preimplantation embryo with the potency to generate in-vitro blastocyst (Blastoids) and to integrate into both embryonic and extra-embryonic lineages in the mice. Together these results revealed BMP signaling mechanisms to regulate both the totipotent state and the heterogeneity of ESCs.
For our third study, we utilized the key observations from our mass cytometry data (first study) to evaluate the role of key regulatory proteins to promote the totipotent cell state. Here, we demonstrate that NACC1, a transcriptional regulator of ESCs, also acts as an important regulator of totipotent cells. Following identification of NACC1 as a potential regulator from both single-cell protein and bulk transcriptome data, we validated its function using CRISPR-mediated knock-out in combination with pluripotent-to-totipotent cell reprogramming conditions. Next, we integrated a combination of genomic approaches to study the NACC1 dependent system’s level changes in the transcriptome, chromatin accessibility and genomic DNA binding. Together, these data revealed that NACC1 induces both the coding gene and retrotransposon gene expression programs to promote the totipotent cell state. Finally, we showed that NACC1 regulates MERVL-int and MT2_Mm retrotransposable elements to modulate the expression of coding genes of the totipotent state.
In conclusion, this thesis reveals the heterogeneous nature of mouse ESCs at the single-cell protein level, elucidates the significant role and mechanisms of BMP signaling pathway to regulate the totipotent state and ESC heterogeneity, and unveils NACC1 dependent gene regulatory mechanisms to promote the totipotent state. These findings open the door for subsequent studies aimed at understanding stem cell state specification and their transition occurring via modulation of signaling pathways / transcription factors. Moreover, these mechanisms may regulate the totipotent cell state in humans, shedding light on the cellular heterogeneity in human ESCs and in disease contexts, such as cancer.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/33158 |
Date | 12 1900 |
Creators | Meharwade, Thulaj D. |
Contributors | Malleshaiah, Mohan |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0031 seconds