• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DMRT1-mediated reprogramming drives development of cancer resembling human germ cell tumors with features of totipotency / DMRT1を介した生体内での細胞初期化は全能性の特徴を持つヒト胚細胞腫瘍に類似したがんを形成する

Taguchi, Jumpei 24 January 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医科学) / 甲第23611号 / 医科博第134号 / 新制||医科||9(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 遊佐 宏介, 教授 小川 誠司, 教授 山中 伸弥 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
2

Proteome and phosphoproteome dynamic change during cell dedifferentiation in Arabidopsis thaliana

Chitteti, Brahmananda Reddy 11 August 2007 (has links)
Cell dedifferentiation is a cell fate switching process in which a differentiated cell reverts to a status with competence for cell division and organ regeneration like an embryonic stem cell. Although the phenomenon of cell dedifferentiation has been known for over two and a half centuries in plants, little is known of the underlying mechanisms. Here, the proteome map of Arabidopsis cotyledons has been established and investigated the dynamic change of the cotyledon proteome in the time course of cell dedifferentiation. Among the 353 distinct genes, corresponding to 500 2-DE gel protein spots identified with high confidence, 12% have over twofold differential regulations within the first 48 h of induction of cell dedifferentiation. The distributions of these genes among different Gene Ontology categories and gene differential regulations within each of the categories have been examined. In addition, the cotyledon phosphoproteome has been investigated using Pro-Q Diamond Phosphoprotein in Gel Stain followed by mass spectrometry analyses. Among the 53 identified putative phosphoproteins, nine are differentially regulated during cell dedifferentiation. Arabidopsis cotyledon proteome at four different time points after the induction of cell dedifferentiation with MudPIT approach has been investigated and analyzed the protein quantity change using two labelree methods, the Spectral Count (SC) and SEQUEST Cross Correlation Coefficient (ÓXcorr) methods. Among the 662 MudPIT identified proteins, one hundred forty eight displayed differential regulation. The up-regulated proteins include transcription factors, calmodulins, translational regulators, and stress response proteins. The Spectral Count and the cross correlation coefficient quantification results are highly consistent in over 81% of the differentially regulated proteins. These studies have provided significant new insight into cell dedifferentiation process in Arabidopsis thaliana and also enhanced the Arabidopsis cotyledon proteome database established using gel based and non gel based methods. The results show that cell dedifferentiation involves extensive protein quantitative and qualitative changes in almost every cellular compartment and cellular process. Proteins like 14-3-3 proteins, Translational controlled tumor protein (TCTP) and its possible interaction protein-Translational elongation factor eEF1 alpha chain, GTP binding nuclear protein RAN2, GTP binding protein SAR1B and several other hypothetical and expressed proteins and nine other phosphoproteins showed significant differential expression during early dedifferentiation. Deciphering the molecular mechanisms regulating the cellular dedifferentiation certainly enhances the understandings and mechanisms of reprogramming all types of differentiated cells including animal cells.
3

Avaliação morfofisiológica, histológica e histoquímica das vias morfogênicas na micropropagação de Neoregelia sp / Morphophysiological, histological and histochemical morphogenic pathways in Neoregelia sp micropropagation

Meneghetti, Eveline Calderan 24 April 2015 (has links)
A família Bromeliaceae apresenta importância ecológica e econômica, desta forma, o desenvolvimento de protocolos para a micropropagação de espécies dessa família, faz-se necessário, a fim de suprir sua demanda comercial e mesmo ecológica. A escolha do meio de cultura e do explante utilizado durante a micropropagação são fundamentais para um protocolo eficaz. Nesse contexto, o objetivo deste estudo foi avaliar as diferenças quantitativas e qualitativas no desenvolvimento de explantes de Neoregelia sp em meios de cultura e monitorar as vias morfogênicas dos propágulos obtidos em explantes foliares. Para tanto, brotos de microcepas e explantes foliares procedentes de um micro jardim clonal, foram transferidos para os meios de cultura de multiplicação MS, ½ MS e WPM, todos suplementados com 0,050 mg.L-1 ANA e 0,50 mg.L-1 de BAP, onde foram mantidos por 120 dias e submetidos a diversas análises morfofisiológicas. Paralelamente, explantes foliares foram mantidos em meio de cultura MS de multiplicação para o monitoramento das vias morfogênicas durante os processos regenerativos. Para os experimentos com brotos de microcepas verificou-se que o meio de cultura MS proporcionou a melhor taxa de multiplicação, maior crescimento dos brotos, obtendo os valores mais elevados de peso de matéria fresca e seca, além disso, apresentaram maior acúmulo de nitrogênio total e proteico. No entanto, os meios de cultura ½ MS e WPM promoveram uma taxa de multiplicação semelhante a do MS, mas com brotos menores e menos vigorosos, porém, mais homogêneos, com isso, na dependência do objetivo do cultivo in vitro, não deve ser desconsiderada a possibilidade de utilização dos meios de cultura ½ MS e WPM. Os explantes foliares não se desenvolveram bem no meio de cultura WPM, não havendo diferença entre os meios MS e ½ MS, visto que ambos apresentaram resultados satisfatórios. As análises histológicas e histoquímicas identificaram células parenquimáticas, que atuam como células-tronco, manifestando capacidade morfogênica para toti ou pluripotência, dando origem respectivamente a embriões somáticos e gemas adventícias, em resposta aos estímulos in vitro. / The Bromeliaceae family has an ecological and economic importance, therefore, the protocols development for micropropagation of species of this family becomes necessary in order to meet its business and even its ecological demand. The choice of culture medium and the explant used during micropropagation are essential for an effective protocol. Thus, the aim of this study was to evaluate the quantitative and qualitative differences in the explants development of Neoregelia sp in the culture media and monitor the morphogenetic pathways of obtained propagules from leaf explants. Consequently, shoots and leaf explants coming from microcloning garden were transferred to the MS, ½ MS and WPM multiplication culture media, all supplemented with 0.050 mg.L-1 NAA and 0.50 mg.L-1 BAP, where they were held for 120 days and submitted to morphological and physiological analysis. Therefore, leaf explants were kept on MS-medium multiplication for monitoring morphogenetic pathways during the regenerative processes. Furthermore, MS medium showed the best multiplication rate for the sprouts of the microstumps, increased growth of shoots, obtaining the highest values of fresh and dry matter weight, and also showed higher accumulation of total nitrogen and protein. However, the ½ MS and WPM culture media promoted a similar multiplication rate to the MS medium, with the development of the smaller and less vigorous shoots, but with greater homogeneity. This way, depending on the purpose of in vitro culture, their use in the micropropagation for this species should not be disregarded. The leaf explants are not well developed in WPM medium, and don\'t had significant difference between the MS and ½ MS culture medium, as both showed satisfactory results. The histological and histochemical analysis identified the presence of the parenchymatic cells, which act as stem cells, expressing morphogenic ability for toti or pluripotency, leading respectively to somatic embryogenesis or adventitious organogenesis in response to in vitro stimuli.
4

Avaliação morfofisiológica, histológica e histoquímica das vias morfogênicas na micropropagação de Neoregelia sp / Morphophysiological, histological and histochemical morphogenic pathways in Neoregelia sp micropropagation

Eveline Calderan Meneghetti 24 April 2015 (has links)
A família Bromeliaceae apresenta importância ecológica e econômica, desta forma, o desenvolvimento de protocolos para a micropropagação de espécies dessa família, faz-se necessário, a fim de suprir sua demanda comercial e mesmo ecológica. A escolha do meio de cultura e do explante utilizado durante a micropropagação são fundamentais para um protocolo eficaz. Nesse contexto, o objetivo deste estudo foi avaliar as diferenças quantitativas e qualitativas no desenvolvimento de explantes de Neoregelia sp em meios de cultura e monitorar as vias morfogênicas dos propágulos obtidos em explantes foliares. Para tanto, brotos de microcepas e explantes foliares procedentes de um micro jardim clonal, foram transferidos para os meios de cultura de multiplicação MS, ½ MS e WPM, todos suplementados com 0,050 mg.L-1 ANA e 0,50 mg.L-1 de BAP, onde foram mantidos por 120 dias e submetidos a diversas análises morfofisiológicas. Paralelamente, explantes foliares foram mantidos em meio de cultura MS de multiplicação para o monitoramento das vias morfogênicas durante os processos regenerativos. Para os experimentos com brotos de microcepas verificou-se que o meio de cultura MS proporcionou a melhor taxa de multiplicação, maior crescimento dos brotos, obtendo os valores mais elevados de peso de matéria fresca e seca, além disso, apresentaram maior acúmulo de nitrogênio total e proteico. No entanto, os meios de cultura ½ MS e WPM promoveram uma taxa de multiplicação semelhante a do MS, mas com brotos menores e menos vigorosos, porém, mais homogêneos, com isso, na dependência do objetivo do cultivo in vitro, não deve ser desconsiderada a possibilidade de utilização dos meios de cultura ½ MS e WPM. Os explantes foliares não se desenvolveram bem no meio de cultura WPM, não havendo diferença entre os meios MS e ½ MS, visto que ambos apresentaram resultados satisfatórios. As análises histológicas e histoquímicas identificaram células parenquimáticas, que atuam como células-tronco, manifestando capacidade morfogênica para toti ou pluripotência, dando origem respectivamente a embriões somáticos e gemas adventícias, em resposta aos estímulos in vitro. / The Bromeliaceae family has an ecological and economic importance, therefore, the protocols development for micropropagation of species of this family becomes necessary in order to meet its business and even its ecological demand. The choice of culture medium and the explant used during micropropagation are essential for an effective protocol. Thus, the aim of this study was to evaluate the quantitative and qualitative differences in the explants development of Neoregelia sp in the culture media and monitor the morphogenetic pathways of obtained propagules from leaf explants. Consequently, shoots and leaf explants coming from microcloning garden were transferred to the MS, ½ MS and WPM multiplication culture media, all supplemented with 0.050 mg.L-1 NAA and 0.50 mg.L-1 BAP, where they were held for 120 days and submitted to morphological and physiological analysis. Therefore, leaf explants were kept on MS-medium multiplication for monitoring morphogenetic pathways during the regenerative processes. Furthermore, MS medium showed the best multiplication rate for the sprouts of the microstumps, increased growth of shoots, obtaining the highest values of fresh and dry matter weight, and also showed higher accumulation of total nitrogen and protein. However, the ½ MS and WPM culture media promoted a similar multiplication rate to the MS medium, with the development of the smaller and less vigorous shoots, but with greater homogeneity. This way, depending on the purpose of in vitro culture, their use in the micropropagation for this species should not be disregarded. The leaf explants are not well developed in WPM medium, and don\'t had significant difference between the MS and ½ MS culture medium, as both showed satisfactory results. The histological and histochemical analysis identified the presence of the parenchymatic cells, which act as stem cells, expressing morphogenic ability for toti or pluripotency, leading respectively to somatic embryogenesis or adventitious organogenesis in response to in vitro stimuli.
5

Establishment in culture of mouse and human stem cells with expanded fate potential

Ryan, David John January 2018 (has links)
The zygote and blastomeres of cleavage stage mouse embryos have the capacity to differentiate to the embryonic and both extra-embryonic lineages and are considered functionally totipotent. Until now, it has not been possible to establish stable cell lines that resemble these totipotent-like cells. In this work, I hypothesised that by modulating signalling pathways known to be important in early embryonic development it may be possible to capture in vitro a self-renewing state that possessed features of pre-implantation blastomeres. I succeeded in formulating a novel hypothesis driven cell culture medium which allowed the establishment of a stem cell state that possessed expanded differentiation potential to the embryonic and both extra-embryonic lineages in vitro and in vivo. These cells were isolated directly from in vitro culture of mouse pre-implantation embryos or single cell blastomeres, reprogrammed from somatic cells or converted from mouse ES cells. With these cells, I generated single cell chimeras which demonstrated extensive contribution to all lineages in the developing organism providing additional evidence that this chemical medium maintained a homogenous stem cell population. I demonstrated that the transcriptome of these cells was enriched with an early pre-implantation blastomere signature, distinct from other rare published totipotent-like cells. Finally, I demonstrated that the same chemical formulation permitted the establishment in vitro of a human stem cell state that possessed expanded differentiation potential to the embryonic and extra-embryonic lineage in vitro. My work has shown for the first time that through chemical modulation of pathways implicated to be involved in pre-implantation development, a novel homogenous stem cell state that possesses a pre-implantation transcriptional signature and expanded differentiation potential to both the embryonic and extra-embryonic lineage can be established and maintained in vitro in both mouse and human, suggesting a possible interspecies conservation of the signalling networks involved in early embryonic development.

Page generated in 0.0469 seconds