Return to search

First-principles Investigation of Small Polarons in Metal Oxides

Ein limitierender Faktor der Leitfähigkeit ist die Wechselwirkung der Ladungsträger mit polaren Phononenmoden; das resultierende Quasiteilchen wird als Polaron bezeichnet. Die Stärke der Elektron-Phonon (el-ph)-Wechselwirkung bestimmt die Stärke der Lokalisierung des Polarons, die z.B. die Charakteristik der Temperaturabhängigkeit der Mobliltät definiert. Wir fokussieren uns auf Metalloxide mit starker (el-ph)-Kopplung, bei der sich kleine Polaronen bilden.

Die Dichtefunktionaltheorie wird häufig für zur Simulation von Polaronen verwendet. Jedoch treten hierbei zwei Schwierigkeiten auf: Die Sensitivität der berechneten Eigenschaften in Abhängigkeit der Fehler im Austausch-Korrelations (XC)-Funktional und der Effekt der endlichen Superzellgröße. Beide Probleme werden in dieser Arbeit untersucht. Die Polaroneneigenschaften werden auf einer modifizierten Potentialoberfläche (PES) berechnet. Durch Variierung des Anteils der exakten Austauschenergie im hybriden HSE-Funktional zeigen wir, dass das modifizierte PES-Modell deutlich die Abhängigkeit der Polaroneneigenschaften vom XC-Funktional reduziert. Basierend auf dem Potential der el-ph-Kopplung von Pekar leiten wir das korrekte elastische langreichweitige Verhalten des Polarons und darauf aufbauend eine Korrektur für den Fehler durch die endliche Superzellgröße her. Diese Erkenntnisse werden durch ausgiebige Tests an MgO und Rutil TiO2 überprüft.

Die oben beschriebene Methode wird zur Untersuchung des Einflusses der Kristallstruktur auf die Bildung von Polaronen in Rutil und Anatas TiO2 und in der β- und κ-Phase von Ga2O3 angewendet. Während in Rutil nur kleine Elektronpolaronen stabil sind, finden wir in Anatas nur stabile Lochpolaronen. Hingegen existieren in beiden Phasen von Ga2O3 nur stabile Lochpolaronen, jedoch mit deutlich unterschiedlichen Bindungsenergien. Dadurch kann durch Verwendung unterschiedlicher Kristallstrukturen Eigenschaften wie Leitfähigkeit und Mobilität der Ladungsträger beeinflusst werden. / An important factor limiting the conductivity is the interaction of the charge carrier with polar phonon modes. Such a phonon-dressed charge carrier is called polaron. The strength of the electron-phonon (el-ph) interaction determines the localization of the polaron, which in turn e.g. defines its characteristic temperature dependence for the charge-carrier mobility. We focus on metal oxides with strong el-ph coupling, where small polarons are formed.

Density-functional theory is often used for calculating properties of polarons. However, there are two challenges: sensitivity of the calculated properties to the errors in exchange-correlation (XC) treatment and finite-size effects in supercell calculations. In this work, we develop an approach that addresses both challenges. The polaron properties are obtained using a modified neutral potential-energy surface (PES). By changing the fraction of exact exchange in the hybrid HSE functional we show that the modified PES model significantly reduces the dependence of the polaron properties on the XC functional. Based on Pekar's potential for the long-range el-ph coupling, we derive the proper elastic long-range behavior of the polaron and a finite-size correction for the polaron properties. These findings are proofed by an extensively test for rock salt MgO and rutile TiO2.

Finally, the approach is used to investigate the influence of the crystal structure on the polaron properties for rutile and anatase TiO2, as well as for the monoclinic β- and orthorhombic κ-phase of Ga2O3. While in rutile TiO2 only small electron polarons are stable, only small hole polarons are found in anatase. Further, small hole polarons exist in both Ga2O3 polymorphs but have significantly different binding energies. Thus, we conclude that growing crystals of the same material but with different structure can be used to manipulate conductivity and charge-carrier mobility.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/20307
Date13 November 2018
CreatorsKokott, Sebastian
ContributorsScheffler, Matthias, Draxl, Claudia, Erhart, Paul
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY 3.0 DE) Namensnennung 3.0 Deutschland, http://creativecommons.org/licenses/by/3.0/de/

Page generated in 0.0025 seconds