Return to search

Multivalency in the interaction of biological polymers

Diese Dissertation konzentriert sich auf die Untersuchung multivalenter Wechselwirkungen zwischen Hämagglutinin (HA) sowie Neuraminidase (NA) zweier Stämme des Influenzavirus (H1N1 und H3N2) und dem zellulären Liganden Sialinsäure (SA) unter Verwendung von Rasterkraftmikroskopie und Einzelmolekülkraftspektroskopie (SMFS). Bindungskräfte sowie Dissoziations- und Assoziationskinetiken, zusammen mit den intermolekularen Potentiallandschaften wurden, nach bestem Wissen erstmalig, auf Einzelmolekülebene mittels SMFS quantifiziert. Zu diesem Zweck wurden mono- und multivalente SA-Liganden (SAPEGLA und dPGSA) eingesetzt. Abweichungen der experimentellen Kraftspektren vom klassischen Kramers-Bell-Evans-Modell vorhergesagten Verhalten wurden durch das Friddle-Noy-De Yoreo-Model berücksichtigt. NA beider Virusstämme zeigte trotz ähnlicher Bindungskräfte eine stabilere Bindung mit SA als HA und dissoziierte 3 – 7 mal langsamer. Es wird vermutet, dass die höhere Stabilität die geringere Oberflächendichte von NA auf der Virushülle im Vergleich zu HA ausgleicht. Die Bindungskräfte eines SAPEGLA-Clusters nehmen mit der Anzahl der Bindungen und die Dissoziationskinetik folgt dem theoretisch vorhergesagten Trend. Die Dissoziationsrate von NA ist etwa 6-mal höher ist als ihre katalytische Rate, weshalb Mehrfachbindungen zur Spaltung von SA erforderlich sind. Die Dissoziationsrate von N1 in der gleichen Größenordnung wie die von H3 und es wird vermutet, dass derartige Ähnlichkeiten die Übertragbarkeit des Virus begünstigen. Darüber hinaus wird gezeigt, dass die thermische Stabilität von HA-dPGSA höher ist als von HA-SAPEGLA und im Bereich von 3 - 4 Einzelbindungen liegt, was für NA-dPGSA nicht beobachtet werden konnte. Daher bindet dPGSA spezifisch und kooperativ multivalent an HA. Kompetitive Bindungstests zeigen, dass SMFS zum Screening von antiviralen Inhibitoren verwendet werden und Zugang zu deren Design auf Einzelmolekülebene liefern könnte. / This thesis focuses on studying multivalent interactions between influenza virus hemagglutinin (HA) as well
as neuraminidase (NA) of two viral strains (H1N1 and H3N2) and the cellular ligand sialic acid (SA) by using scanning force microscopy and single molecule force spectroscopy (SMFS). Unbinding forces as well as dissociation and association kinetics together with the free energy landscapes were, to the best knowledge for the first time, individually quantified on the single molecule level using SMFS.
To this extent, designed synthetic monovalent (SAPEGLA) and multivalent (dPGSA) SA displaying ligands were employed. Surprisingly, the experimental force spectra did not show the log-linear trend predicted by the classical Kramers-Bell-Evans model, but rather follow the more recent Friddle-Noy-De Yoreo model. NA of both viral strains forms a more stable bond with SA than HA, and dissociates 3 to 7 times slower. It is reasoned that the higher stability compensates for the lesser amount of NA compared to HA that is typically found on the viral envelope. The unbinding forces of the cluster of SAPEGLA increased gradually with the number of bonds in the cluster and the dissociation kinetics follow the theoretically predicted trend.
The dissociation rate of NA was found to be about 6 times higher than its catalytic rate, indicating that multiple bonds are needed for cleavage of SA. The dissociation rate of N1 is on the same order as that of H3, suggesting that these similarities between the two strains favor transmissibility. The thermal stability of the HA-dPGSA bond is higher than the HA-SAPEGLA reaching that of three to four single bonds, proving specificity and cooperativity. Such an enhancement could not be observed for the binding of NA. This thesis also shows that SMFS could be used as a tool to screen antiviral inhibitors in competitive binding assays, which may contribute insight into the design of antiviral inhibitors on the single molecule level.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/22617
Date14 September 2020
CreatorsReiter-Scherer, Valentin D.
ContributorsRabe, Jürgen P., Herrmann, Andreas, Anselmetti, Dario
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY-NC-SA 4.0) Attribution-NonCommercial-ShareAlike 4.0 International, https://creativecommons.org/licenses/by-nc-sa/4.0/

Page generated in 0.0026 seconds