Return to search

Social media mining as an opportunistic citizen science model in ecological monitoring: a case study using invasive alien species in forest ecosystems.

Dramatische ökologische, ökonomische und soziale Veränderungen bedrohen die Stabilität von Ökosystemen weltweit und stellen zusammen mit neuen Ansprüchen an die vielfältigen Ökosystemdienstleistungen von Wäldern neue Herausforderungen für das forstliche Management und Monitoring dar. Neue Risiken und Gefahren, wie zum Beispiel eingebürgerte invasive Arten (Neobiota), werfen grundsätzliche Fragen hinsichtlich etablierter forstlicher Managementstrategien auf, da diese Strategien auf der Annahme stabiler Ökosysteme basieren. Anpassungsfähige Management- und Monitoringstrategien sind deshalb notwendig, um diese neuen Bedrohungen und Veränderungen frühzeitig zu erkennen. Dies erfordert jedoch ein großflächiges und umfassendes Monitoring, was unter Maßgabe begrenzter Ressourcen nur bedingt möglich ist. Angesichts dieser Herausforderungen haben Forstpraktiker und Wissenschaftler begonnen auch auf die Unterstützung von Freiwilligen in Form sogenannter „Citizen Science“-Projekte (Bürgerwissenschaft) zurückzugreifen, um zusätzliche Informationen zu sammeln und flexibel auf spezifische Fragestellungen reagieren zu können.
Mit der allgemeinen Verfügbarkeit des Internets und mobiler Geräte ist in Form sogenannter sozialer Medien zudem eine neue digitale Informationsquelle entstanden. Mittels dieser Technologien übernehmen Nutzer prinzipiell die Funktion von Umweltsensoren und erzeugen indirekt ein ungeheures Volumen allgemein zugänglicher Umgebungs- und Umweltinformationen. Die automatische Analyse von sozialen Medien wie Facebook, Twitter, Wikis oder Blogs, leistet inzwischen wichtige Beiträge zu Bereichen wie dem Monitoring von Infektionskrankheiten, Katastrophenschutz oder der Erkennung von Erdbeben. Anwendungen mit einem ökologischen Bezug existieren jedoch nur vereinzelt, und eine methodische Bearbeitung dieses Anwendungsbereichs fand bisher nicht statt.
Unter Anwendung des Mikroblogging-Dienstes Twitter und des Beispiels eingebürgerter invasiver Arten in Waldökosystemen, verfolgt die vorliegende Arbeit eine solche methodische Bearbeitung und Bewertung sozialer Medien im Monitoring von Wäldern. Die automatische Analyse sozialer Medien wird dabei als opportunistisches „Citizen Science“-Modell betrachtet und die verfügbaren Daten, Aktivitäten und Teilnehmer einer vergleichenden Analyse mit existierenden bewusst geplanten „Citizen Science“-Projekten im Umweltmonitoring unterzogen.
Die vorliegenden Ergebnisse zeigen, dass Twitter eine wertvolle Informationsquelle über invasive Arten darstellt und dass soziale Medien im Allgemeinen traditionelle Umweltinformationen ergänzen könnten. Twitter ist eine reichhaltige Quelle von primären Biodiversitätsbeobachtungen, einschließlich solcher zu eingebürgerten invasiven Arten. Zusätzlich kann gezeigt werden, dass die analysierten Twitterinhalte für die untersuchten Arten markante Themen- und Informationsprofile aufweisen, die wichtige Beiträge im Management invasiver Arten leisten können. Allgemein zeigt die Studie, dass einerseits das Potential von „Citizen Science“ im forstlichen Monitoring derzeit nicht ausgeschöpft wird, aber andererseits mit denjenigen Nutzern, die Biodiversitätsbeobachtungen auf Twitter teilen, eine große Zahl von Individuen mit einem Interesse an Umweltbeobachtungen zur Verfügung steht, die auf der Basis ihres dokumentierten Interesses unter Umständen für bewusst geplante „Citizen Science“-Projekte mobilisiert werden könnten.
Zusammenfassend dokumentiert diese Studie, dass soziale Medien eine wertvolle Quelle für Umweltinformationen allgemein sind und eine verstärkte Untersuchung verdienen, letztlich mit dem Ziel, operative Systeme zur Unterstützung von Risikobewertungen in Echtzeit zu entwickeln.

Identiferoai:union.ndltd.org:uni-goettingen.de/oai:ediss.uni-goettingen.de:11858/00-1735-0000-0023-9645-7
Date27 August 2015
CreatorsDaume, Stefan
ContributorsGadow, Klaus von Prof. Dr. Dr. h.c.
Source SetsGeorg-August-Universität Göttingen
LanguageEnglish
Detected LanguageGerman
TypecumulativeThesis
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0029 seconds