• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 9
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automatisierte Differenzierung von Vegetationsstrukturen in Moorgebieten mit Methoden der Fernerkundung / Automated Discrimination of Vegetation Structures in Moorlands Using Remote Sensing Methods

Zimmermann, Sebastian 17 July 2018 (has links) (PDF)
Moore besitzen weltweit eine große Bedeutung für den Natur- und Klimaschutz. Sie dienen als Lebensraum für eine Vielzahl an Pflanzen- und Tierarten sowie als Kohlenstoffsenken. Aufgrund intensiver land- und forstwirtschaftlicher Nutzung weist die Mehrheit der Moorgebiete jedoch hochgradige Schäden auf, durch welche sie in ihrer Funktionalität beeinträchtigt werden. Um die charakteristischen Biotopeigenschaften wiederherzustellen, laufen derzeit zahlreiche Moorschutzprogramme, unter anderem in der deutsch-tschechischen Grenzregion im Osterzgebirge. Damit die Auswirkungen der durchgeführten Schutz- und Renaturierungsmaßnahmen auf die Vegetationsstruktur verfolgt und kontrolliert werden können, erfolgt in dieser Region regelmäßig eine stereoskopische Luftbildinterpretation der Moorflächen. Derartige manuelle Auswertungen sind jedoch mit einem hohen Arbeitsaufwand verbunden, weswegen eine Automatisierung der Prozesse angestrebt wird. In der vorliegenden Arbeit wird ein Verfahren präsentiert, mit welchem die Vegetationsstrukturen der Moore bei Satzung teilautomatisch klassifiziert werden können. Unter Verwendung von digitalen Luftbildern und einem digitalen Geländemodell lassen sich verschiedene Gras-, Baum- und Bodenarten voneinander trennen und lokalisieren. Für die Unterscheidung der einzelnen Klassen werden sowohl pixel- als auch objektbasierte Merkmale in die Datenanalyse einbezogen. Aufnahmen der Satelliten WorldView-2 und Sentinel-2A wurden ebenfalls auf ihr Auswertepotential hin untersucht, allerdings ohne zufriedenstellende Ergebnisse. Die Automatisierung von Monitoring-Prozessen für Moorschutzgebiete ermöglicht eine Objektivierung des Analyseverfahrens und stellt eine zeit- und kostengünstige Alternative zur stereoskopischen Bildinterpretation dar. / Moorlands are of worldwide importance for nature and climate protection. They serve as a habitat for a variety of plant and animal species, as well as carbon sinks. Most of the moorlands show significant damage from intense agricultural and silvicultural use, affecting the functionality of many. Currently, several moorland protection programs are running to restore the habitats’ characteristic features, such as that in the Czech-German border region in The Eastern Ore Mountains. Using stereoscopic image interpretation, the moorlands in this region are regularly monitored to observe the influence of executed protection and renaturation measures on the local vegetation structures. However, such manual evaluations require high labor costs. Therefore, the automation of this process is sought. The master thesis at hand presents a procedure enabling the semi-automatic classification of vegetation structures in the moorlands nearby Satzung, Germany. Different grass, tree and soil types can be distinguished and localized using digital aerial imagery and a digital terrain model. For the distinction between different object classes, pixel- and object-based features are taken into consideration. Satellite images acquired by WorldView-2 and Sentinel-2A were also tested for their classification suitability, but without satisfactory results. The automation of monitoring processes for protected moorlands facilitates the externalization of the data analysis and represents a time- and cost-efficient alternative to stereoscopic image interpretations.
2

Towards Sentinel 2 based environmental contamination monitoring

Köhler, Christian 16 July 2019 (has links)
Supporting environmental monitoring with remote sensing data considerably increases cost effectiveness and reliability of traditional, manual solutions. Additionally, by means of automation, it bears the potential to prevent contaminations or disasters through the availability of timely and spatially dense data. To this end, we investigate the possibility to monitor gas and oil pipelines of a storage cavern by using optical, multi spectral data from the Copernicus Sentinel 2 satellites. Due to a lack of known disasters/contaminations, we resort to a monitoring approach based on statistical outliers. First results demonstrate the general capability of our approach to detect contaminations and generate warnings.
3

Anwendung von SENTINEL-2- und Stereo-WorldView-3-Daten für die Fortführung des Umweltmonitorings der Landeshauptstadt Potsdam

Frick, Annett, Tervooren, Steffen 24 October 2019 (has links)
Von 1992 an wurden für die Landeshauptstadt Potsdam auf Basis von Fernerkundungsdaten alle sechs Jahre Daten zu Realnutzung (Biotopen), Versiegelung und Grünvolumen erfasst. Dabei wurden höchstauflösende Fernerkundungsdaten in Verbindung mit visueller Interpretation und automatisierten Regressionsbaummodellen verwendet, die die Ableitung dieser Parameter mit hoher Genauigkeit sicherstellen. Im Jahr 2016 wurden erstmals multitemporale Sentinel-2- und stereoskopische WorldView 3-Daten einbezogen. Das Verfahren bietet die Möglichkeit, die städtebauliche Entwicklung detailliert nachzuvollziehen und funktionale Zusammenhänge städtebaulicher Prozesse zu verstehen. Ansprüche an eine wirkungsvolle Klimaanpassung im Sinne der Reduktion von Hitzestress können so besser definiert werden. Die Kontinuität und der hohe Detaillierungsgrad des städtischen Umweltmonitorings sind zudem geeignet, weitere räumliche Analysen zu verifizieren.
4

Potentiale und Herausforderungen bei der Aggregation und Inwertsetzung individueller Umweltinformationen in urbanen Ökosystemen: Entwicklung und Evaluierung eines serviceorientierten Frameworks unter Nutzung einer modellgetriebenen Prozessintegration am Beispiel der individuellen thermischen Exposition

Goblirsch, Tobias 30 June 2021 (has links)
Individualität und ökologisches Bewusstsein gewinnen in der gesellschaftlichen Wahrnehmung immer stärker an Bedeutung. Entsprechend dieser Treiber sind Menschen zunehmend interessiert, Informationen zu erhalten, die individuell auf die eigenen Bedürfnisse angepasst und auf die aktuelle Umgebungssituation abgestimmt sind. In der heutigen Wissensgesellschaft bilden Umweltinformationen dabei ein zentrales Element zur Bewertung ökologischer und ökonomischer Systemzusammenhänge. Zur Erfassung und wissenschaftlichen Beschreibung derartiger Informationen fehlen bislang geeignete Methoden, sodass sich die Dissertation diesem Thema nähert. Die vorliegende Arbeit beschreibt die Potentiale und Herausforderungen bei der Aggregation und Inwertsetzung individueller Umweltinformationen in urbanen Ökosystemen. Ziel dabei ist die Entwicklung und Evaluierung eines serviceorientierten Frameworks unter Nutzung einer modellgetriebenen Prozessintegration. Urbane Gebiete zeichnen sich insbesondere durch heterogene Strukturen und einer hohen zeitlichen Dynamik von Umweltkenngrößen aus und bilden somit sehr komplexe Ökosysteme. In diesen Punkten unterscheiden sich urbane Ökosysteme deutlich von Ökosystemen des ländlichen Raums. Charakteristische Merkmale wie intensive Flächennutzung, dichte Bebauung aber auch starke anthropogene Einflüsse haben Auswirkungen auf physikalische, chemische und biologische Prozesskreisläufe. Dadurch bilden sich in Städten gegenüber dem ländlichen Raum Besonderheiten aus, ein sog. Mesoklimaraum. Aufbauend auf einer allgemeinen Systemanalyse wird das Konzept des \textit{Raster Model Exposure Pattern} und des \textit{Exposure Data Service} eingeführt. Diese beiden Artefakte bilden eine Transformationsstrategie um ganzheitlich umwelt- und informationswissenschaftliche Betrachtungen durchzuführen, sowie individuelle Expositionen in urbanen Ökosystemen zu aggregieren.:1. Einleitung 1.1. Motivation 1.2. Forschungsgegenstand 1.3. Forschungsziel 1.4. Erwartete Ergebnisse 1.5. Forschungsmethode 1.6. Aufbau der Arbeit 2. Inwertsetzung individueller Umweltinformationen 2.1. Ein Blick in die Stadt der Zukunft 2.2. Anwendungsszenarien für individuelle Umweltinformationen 2.2.1. Individuelle Umweltinformationen zur Entscheidungsfindung 2.2.2. Individuelle Umweltinformationen zur Minimierung von Risiken 2.3. Exposom und Exposition 3. Systembeschreibung urbaner Ökosysteme 3.1. Hintergrund 3.2. Allgemeine Systemanalyse 3.3. Modelle im Kontext urbaner Ökosysteme 3.3.1. Konzeptionelles Modell 3.3.2. Technisches Modell 3.4. In situ Daten 3.5. Transformation 3.5.1. KDD Prozess 3.5.2. Wissensbasierte Systeme 3.5.3. Regelbasis - Regelbasierte Systeme 3.5.4. Regelbasis - Maschinelles Lernen 3.6. Systemmanagement 4. Urbanes Klima - ein komplexes Phänomen 4.1. Hintergrund 4.2. Das Phänomen von Wärmeinseln in urbanen Ökosystemen 4.3. Urbanisierung 4.4. Heterogenität urbaner Strukturen 4.5. Hohe Dynamik von Zustandsgrößen 4.6. Forschungskonzept zur Bestimmung individueller Expositionen in urbanen Ökosystemen II. Konzeptionelles Vorgehensmodell zur Bestimmung individueller thermischer Expositionen in urbanen Ökosystemen 5. Raster Model Exposure Pattern 5.1. Analyse 5.2. Implementierung 5.2.1. Import der Rasterdaten und Bewegungsdaten 5.2.2. Zeitdiskretisierung der Bewegungsdaten 5.2.3. Georeferenzierung der Bewegungsdaten auf die Rasterelemente 5.2.4. Abfrage der Exposition 5.2.5. Berechnung der Individuellen Exposition 6. Exposure Data Services 6.1. Hintergrund 6.2. Vorgehensmodell 6.3. Die Transformation im Exposure Data Service 6.4. Die Durchführung der Systemanalyse im Exposure Data Service 6.5. Bestimmung der in situ Daten im Exposure Data Service 6.6. Das Systemmanagement im Exposure Data Service 7. Wärme in der Stadt - ein Fallbeispiel 7.1. Transformation 7.2. Systemanalyse 7.2.1. Definition der Zielkenngröße 7.2.2. Definition des Untersuchungsgebietes 7.2.3. A-priori Informationen über das Untersuchungsgebiet 7.2.4. Rasterung des Untersuchungsgebietes 7.2.5. Klassifizierung von Kontext und In situ Daten 7.2.6. Klassifizierung der Thermischen Exposition 7.2.7. Erarbeitung einer Monitoringstrategie 7.3. in situ Daten 7.3.1. Definition der Kenngrößen 7.3.2. Spezifikation der Datenquellen 7.3.3. Auswahl geeigneter Datenquellen 7.4. Systemmanagement 7.4.1. Entwicklung einer Systemarchitektur 7.4.2. Spezifikation der Komponenten 7.4.3. Erfassung der Datenflüsse 7.4.4. Inbetriebnahme der IT Infrastruktur 8. Thermische Charakterisierung 104 8.1. Material und Methode 8.2. Ergebnis und Auswertung 9. Instanziierung 9.1. Programmlogik 9.1.1. UI Rules Engine 9.1.2. Datenschnittstelle - API 9.1.3. Map Prozessierung 9.2. Prozessierung der Indikatoren 9.2.1. LST Prozessierung 9.2.2. NDVI Prozessierung 9.2.3. Landnutzung Prozessierung 9.2.4. Prozessierung der subjektiven Temperatur 9.2.5. Wärmeindex Prozessierung 9.3. Zusammenhängende Betrachtung der Indikatoren 10. Synthese und Diskussion 11. Schlussbetrachtung 11.1. Zusammenfassung 11.2. Forschungsbeitrag 11.3. Ausblick Literaturverzeichnis
5

Automatisierte Differenzierung von Vegetationsstrukturen in Moorgebieten mit Methoden der Fernerkundung

Zimmermann, Sebastian 07 March 2018 (has links)
Moore besitzen weltweit eine große Bedeutung für den Natur- und Klimaschutz. Sie dienen als Lebensraum für eine Vielzahl an Pflanzen- und Tierarten sowie als Kohlenstoffsenken. Aufgrund intensiver land- und forstwirtschaftlicher Nutzung weist die Mehrheit der Moorgebiete jedoch hochgradige Schäden auf, durch welche sie in ihrer Funktionalität beeinträchtigt werden. Um die charakteristischen Biotopeigenschaften wiederherzustellen, laufen derzeit zahlreiche Moorschutzprogramme, unter anderem in der deutsch-tschechischen Grenzregion im Osterzgebirge. Damit die Auswirkungen der durchgeführten Schutz- und Renaturierungsmaßnahmen auf die Vegetationsstruktur verfolgt und kontrolliert werden können, erfolgt in dieser Region regelmäßig eine stereoskopische Luftbildinterpretation der Moorflächen. Derartige manuelle Auswertungen sind jedoch mit einem hohen Arbeitsaufwand verbunden, weswegen eine Automatisierung der Prozesse angestrebt wird. In der vorliegenden Arbeit wird ein Verfahren präsentiert, mit welchem die Vegetationsstrukturen der Moore bei Satzung teilautomatisch klassifiziert werden können. Unter Verwendung von digitalen Luftbildern und einem digitalen Geländemodell lassen sich verschiedene Gras-, Baum- und Bodenarten voneinander trennen und lokalisieren. Für die Unterscheidung der einzelnen Klassen werden sowohl pixel- als auch objektbasierte Merkmale in die Datenanalyse einbezogen. Aufnahmen der Satelliten WorldView-2 und Sentinel-2A wurden ebenfalls auf ihr Auswertepotential hin untersucht, allerdings ohne zufriedenstellende Ergebnisse. Die Automatisierung von Monitoring-Prozessen für Moorschutzgebiete ermöglicht eine Objektivierung des Analyseverfahrens und stellt eine zeit- und kostengünstige Alternative zur stereoskopischen Bildinterpretation dar. / Moorlands are of worldwide importance for nature and climate protection. They serve as a habitat for a variety of plant and animal species, as well as carbon sinks. Most of the moorlands show significant damage from intense agricultural and silvicultural use, affecting the functionality of many. Currently, several moorland protection programs are running to restore the habitats’ characteristic features, such as that in the Czech-German border region in The Eastern Ore Mountains. Using stereoscopic image interpretation, the moorlands in this region are regularly monitored to observe the influence of executed protection and renaturation measures on the local vegetation structures. However, such manual evaluations require high labor costs. Therefore, the automation of this process is sought. The master thesis at hand presents a procedure enabling the semi-automatic classification of vegetation structures in the moorlands nearby Satzung, Germany. Different grass, tree and soil types can be distinguished and localized using digital aerial imagery and a digital terrain model. For the distinction between different object classes, pixel- and object-based features are taken into consideration. Satellite images acquired by WorldView-2 and Sentinel-2A were also tested for their classification suitability, but without satisfactory results. The automation of monitoring processes for protected moorlands facilitates the externalization of the data analysis and represents a time- and cost-efficient alternative to stereoscopic image interpretations.
6

Silikonstab-Passivsammler für hydrophobe Organika

Gunold, Roman 23 March 2016 (has links) (PDF)
Diese Dissertation beschäftigt sich mit der passiven Probenahme von hydrophoben organischen Schadstoffen in Oberflächengewässern: Polyaromatische Kohlenwasserstoffe (PAK), polychlorierte Biphenyle (PCB), polybromierte Biphenylether (PBDE), Organochlorpestizide (u. a. HCH, DDX) und weitere hydrophobe Pestizide. Die Zielstellung dieser Arbeit lag bei der Validierung des Silikonstabs als Alternativmethode im Gewässermonitoring zu konventionellen Probenahmetechniken wie Schöpf- und Wochenmischproben der Wasserphase sowie Schwebstoffanalysen. Die Probenahme mit dem Silikonstab erfolgte durch dessen Exposition im Gewässer für einen Zeitraum zwischen einer Woche und mehreren Monaten. Nach Einholung wurden die im Silikonstab akkumulierten Schadstoffe (Analyten) mittels instrumenteller Analytik quantifiziert. Die Probenaufgabe erfolgte ohne vorherige Lösungsmittelextraktion durch direktes Erhitzen des Silikonstabs, wodurch die Analyten vom Polymer desorbieren (Thermodesorption). Die durch Hitze freigesetzten Analyten wurden direkt auf eine chromatographische Trennsäule gegeben und massenspektroskopisch quantifiziert. Nach Erhalt der Ergebnisse der Silikonstab-Analytik gibt es verschiedene Herangehensweisen für die Berechnung der zeitgemittelten Analytkonzentrationen im Gewässer, die in dieser Arbeit vorgestellt und diskutiert werden. Dazu gehören die Verwendung von experimentellen Daten aus Kalibrierversuchen und Berechnungen auf Grundlage von physikochemischen Eigenschaften der Analyten wie dem Sammler-Wasser-Verteilungskoeffizienten. Im Zuge dieser Arbeit wurde die Aufnahmekinetik des Silikonstabs bei verschiedenen Temperaturen und Fließgeschwindigkeiten mit Hilfe von Kalibrierversuchen untersucht. Die gewonnenen experimentellen Daten wurden für die Entwicklung von Rechenmodellen herangezogen, mit denen das Aufnahmeverhalten vorgesagt werden soll. Es wurden Sammler-Wasser-Verteilungskoeffizienten für den Silikonstab u. a. mit der Kosolvenzmethode bestimmt und als Parameter für die Berechnung von zeitgemittelten Analytkonzentrationen des Gewässers verwendet. Für die Validierung wurde der Silikonstab in zwei Gewässergütemessstationen der Fließgewässer Mulde (Dessau) und Elbe (Magdeburg) in Durchflussbehältern exponiert und die zeitgemittelten Analytkonzentrationen mit verschiedenen Rechenmodellen bestimmt. Die erhaltenen Werte werden mit gleichzeitig entnommenen Wochenmischproben der Wasserphase sowie monatlichen Schwebstoffproben verglichen und die Eignung des Silikonstabs als alternative Probenahmemethode für das Umweltmonitoring von Oberflächengewässern diskutiert.
7

Silikonstab-Passivsammler für hydrophobe Organika: Aufnahmekinetik, Verteilungskoeffizienten, Modellierung und Freiland-Kalibrierung

Gunold, Roman 14 December 2015 (has links)
Diese Dissertation beschäftigt sich mit der passiven Probenahme von hydrophoben organischen Schadstoffen in Oberflächengewässern: Polyaromatische Kohlenwasserstoffe (PAK), polychlorierte Biphenyle (PCB), polybromierte Biphenylether (PBDE), Organochlorpestizide (u. a. HCH, DDX) und weitere hydrophobe Pestizide. Die Zielstellung dieser Arbeit lag bei der Validierung des Silikonstabs als Alternativmethode im Gewässermonitoring zu konventionellen Probenahmetechniken wie Schöpf- und Wochenmischproben der Wasserphase sowie Schwebstoffanalysen. Die Probenahme mit dem Silikonstab erfolgte durch dessen Exposition im Gewässer für einen Zeitraum zwischen einer Woche und mehreren Monaten. Nach Einholung wurden die im Silikonstab akkumulierten Schadstoffe (Analyten) mittels instrumenteller Analytik quantifiziert. Die Probenaufgabe erfolgte ohne vorherige Lösungsmittelextraktion durch direktes Erhitzen des Silikonstabs, wodurch die Analyten vom Polymer desorbieren (Thermodesorption). Die durch Hitze freigesetzten Analyten wurden direkt auf eine chromatographische Trennsäule gegeben und massenspektroskopisch quantifiziert. Nach Erhalt der Ergebnisse der Silikonstab-Analytik gibt es verschiedene Herangehensweisen für die Berechnung der zeitgemittelten Analytkonzentrationen im Gewässer, die in dieser Arbeit vorgestellt und diskutiert werden. Dazu gehören die Verwendung von experimentellen Daten aus Kalibrierversuchen und Berechnungen auf Grundlage von physikochemischen Eigenschaften der Analyten wie dem Sammler-Wasser-Verteilungskoeffizienten. Im Zuge dieser Arbeit wurde die Aufnahmekinetik des Silikonstabs bei verschiedenen Temperaturen und Fließgeschwindigkeiten mit Hilfe von Kalibrierversuchen untersucht. Die gewonnenen experimentellen Daten wurden für die Entwicklung von Rechenmodellen herangezogen, mit denen das Aufnahmeverhalten vorgesagt werden soll. Es wurden Sammler-Wasser-Verteilungskoeffizienten für den Silikonstab u. a. mit der Kosolvenzmethode bestimmt und als Parameter für die Berechnung von zeitgemittelten Analytkonzentrationen des Gewässers verwendet. Für die Validierung wurde der Silikonstab in zwei Gewässergütemessstationen der Fließgewässer Mulde (Dessau) und Elbe (Magdeburg) in Durchflussbehältern exponiert und die zeitgemittelten Analytkonzentrationen mit verschiedenen Rechenmodellen bestimmt. Die erhaltenen Werte werden mit gleichzeitig entnommenen Wochenmischproben der Wasserphase sowie monatlichen Schwebstoffproben verglichen und die Eignung des Silikonstabs als alternative Probenahmemethode für das Umweltmonitoring von Oberflächengewässern diskutiert.:I ZUSAMMENFASSUNG ...................................................................................................... 2 II INHALTSVERZEICHNIS .................................................................................................. 3 III ABBILDUNGSVERZEICHNIS .......................................................................................... 5 IV TABELLENVERZEICHNIS ................................................................................................ 6 V GLEICHUNGSVERZEICHNIS ............................................................................................ 7 VI ABKÜRZUNGSVERZEICHNIS........................................................................................... 9 0 VIELEN DANK AN … ...................................................................................................... 11 1. EINLEITUNG ................................................................................................................ 12 1.1 Wasser, seine Nutzung und Verschmutzung ............................................................ 12 1.2 Das Wasser und seine Schadstoffe .......................................................................... 15 1.3 Monitoring von Oberflächengewässern .................................................................... 17 1.3.1 Entnahme konventioneller Schöpfproben .............................................................. 17 1.3.2 Entnahme von Mischproben (integrative oder Kompositproben) ........................... 18 1.3.3 Probenahme des Schwebstoffanteils in der Wasserphase .................................... 19 2. PASSIVSAMMLER IN DER WASSERANALYTIK ................................................................ 21 2.1 Theoretische Grundlagen ......................................................................................... 21 2.1.1 Allgemeiner Aufbau von Passivsammlern ............................................................... 23 2.1.2 Die einzelnen Schritte von der Wasser- in die Sammelphase ................................ 25 2.1.3 Adsorptive und absorptive Akkumulation des Analyten in der Sammelphase ........ 26 2.2 Passivsammlersysteme in der Wasseranalytik ......................................................... 28 2.2.1 Absorbierende Passivsammler für hydrophobe Analyten ....................................... 28 2.2.1.1 Semipermeable membrane device (SPMD) .......................................................... 28 2.2.1.2 LDPE-Streifen (LDPE strips) ................................................................................ 29 2.2.1.3 Silikonplatten (silicone sheets) ........................................................................... 30 2.2.1.4 Chemcatcher ...................................................................................................... 31 2.2.1.5 Lösungsmittelfreie Passivsammler (MESCO / Silikonstab) .................................. 32 2.2.2 Absorbierende Passivsammler für polare Analyten ............................................... 35 2.2.2.1 Polar organic integrative Sampler (POCIS) ......................................................... 35 2.2.2.2 Chemcatcher ...................................................................................................... 35 2.3 Auswertung von Passivsammlerdaten ..................................................................... 35 2.3.1 Gleichgewichtssammler ......................................................................................... 36 2.3.2 Laborkalibrierung .................................................................................................. 37 2.3.3 In-situ-Kalibrierung mit Performance Reference Compounds (PRC) ...................... 38 2.3.4 Validierung von Passivsammlern............................................................................ 39 3. LÖSLICHKEIT UND THERMODYNAMISCHES GLEICHGEWICHT ...................................... 41 3.1 Freie Enthalpie und chemisches Potential ................................................................ 41 3.2 Lineare freie Energie-Beziehungen (LFER) für die Abschätzung von KSW ................ 41 3.3 Kosolvenzmodelle für die Modellierung von KSW ...................................................... 43 3.3.1 Log-Linear-Modell von Yalkowsky .......................................................................... 43 3.3.2 Freie Enthalpie-Ansatz (Khossravi-Connors-Modell) .............................................. 44 3.3.3 Jouyban-Acree-Modell ............................................................................................ 44 4. MATERIAL UND METHODEN ......................................................................................... 45 4.1 Präparation der verwendeten Passivsammler .......................................................... 45 4.2 Laborkalibrierung zur Bestimmung von Sammelraten ............................................... 45 4.2.1 Beschreibung der Versuche für die Silikonstab-Kalibrierung .................................. 45 4.3 Experimentelle Bestimmung von Sammler-Wasser-Verteilungskoeffizienten KSW ... 48 4.3.1 Zeitabhängige KSW-Bestimmung in der Wasserphase .......................................... 48 4.3.2 KSW-Bestimmung mit der Kosolvenzmethode ....................................................... 50 4.4 Validierung des Silikonstabs an limnischen Gewässergütemessstationen ............... 52 5. ERGEBNISSE UND DISKUSSION ................................................................................... 55 5.1 Sammelraten RS für den Silikonstab aus Kalibrierversuchen .................................... 55 5.1.1 Temperaturabhängigkeit ....................................................................................... 58 5.1.2 Einfluss der Hydrodynamik auf die Aufnahmekinetik von PAK ................................ 59 5.1.3 Modellierung von Sammelraten .............................................................................. 62 5.1.3.1 Polynomisches Modell nach Vrana [137] ............................................................. 62 5.1.3.2 Diffusionsmodell nach Booij [71] ......................................................................... 64 5.1.3.3 Diffusionsmodell nach Rusina [85] ...................................................................... 66 5.1.4 Wahl der geeigneten In-situ-Kalibrierung am Beispiel eines Kalibrierversuchs ..... 67 5.1.4.1 Berechnung von In-situ-Sammelraten mit RS-Modellen ...................................... 68 5.1.4.2 Berechnung von In-situ-Sammelraten über Eliminierung von PRCs .................... 69 5.1.4.3 Vergleich Modelle und PRCs mit experimentellen Sammelraten .......................... 70 5.2 Experimentelle Bestimmung des Sammler-Wasser-Verteilungskoeffizienten KSW ... 73 5.2.1 Zeitabhängige KSW-Bestimmung in der Wasserphase .......................................... 73 5.2.2 Zusammenfassung KSW(t)-Versuche in der Wasserphase .................................... 81 5.2.3 KSW-Bestimmung mit der Kosolvenzmethode ....................................................... 81 5.2.3.1 Kosolvenzmodelle ............................................................................................... 83 5.2.4 Zusammenfassung ................................................................................................ 90 5.3 Empirische Modelle zur Abschätzung von KSW-Werten ............................................ 92 5.3.1 Lineare Korrelation des KSW mit physikochemischen und Molekülparametern ...... 92 5.3.2 Berechnung mit Mehrparameter-Regression (LSER) .............................................. 95 5.3.3 Zusammenfassung Abschätzung von KSW-Werten für den Silikonstab ................. 97 5.4 Freilandvalidierung des Silikonstab-Passivsammlers ................................................ 97 5.4.1 Ausbringung an Gewässergütemessstationen....................................................... 97 5.4.1.1 Validierung des Silikonstabs mit Wasserproben ............................................... 100 5.4.1.2 Validierung des Silikonstabs mit Sedimentproben ............................................ 102 5.4.2 Validierung des Silikonstabs bei Laborvergleichsstudien ..................................... 105 6. ERGEBNISSE UND AUSBLICK ..................................................................................... 105 VII LITERATURVERZEICHNIS ......................................................................................... 107 VIII ANHANG ................................................................................................................. 116
8

Social media mining as an opportunistic citizen science model in ecological monitoring: a case study using invasive alien species in forest ecosystems.

Daume, Stefan 27 August 2015 (has links)
Dramatische ökologische, ökonomische und soziale Veränderungen bedrohen die Stabilität von Ökosystemen weltweit und stellen zusammen mit neuen Ansprüchen an die vielfältigen Ökosystemdienstleistungen von Wäldern neue Herausforderungen für das forstliche Management und Monitoring dar. Neue Risiken und Gefahren, wie zum Beispiel eingebürgerte invasive Arten (Neobiota), werfen grundsätzliche Fragen hinsichtlich etablierter forstlicher Managementstrategien auf, da diese Strategien auf der Annahme stabiler Ökosysteme basieren. Anpassungsfähige Management- und Monitoringstrategien sind deshalb notwendig, um diese neuen Bedrohungen und Veränderungen frühzeitig zu erkennen. Dies erfordert jedoch ein großflächiges und umfassendes Monitoring, was unter Maßgabe begrenzter Ressourcen nur bedingt möglich ist. Angesichts dieser Herausforderungen haben Forstpraktiker und Wissenschaftler begonnen auch auf die Unterstützung von Freiwilligen in Form sogenannter „Citizen Science“-Projekte (Bürgerwissenschaft) zurückzugreifen, um zusätzliche Informationen zu sammeln und flexibel auf spezifische Fragestellungen reagieren zu können. Mit der allgemeinen Verfügbarkeit des Internets und mobiler Geräte ist in Form sogenannter sozialer Medien zudem eine neue digitale Informationsquelle entstanden. Mittels dieser Technologien übernehmen Nutzer prinzipiell die Funktion von Umweltsensoren und erzeugen indirekt ein ungeheures Volumen allgemein zugänglicher Umgebungs- und Umweltinformationen. Die automatische Analyse von sozialen Medien wie Facebook, Twitter, Wikis oder Blogs, leistet inzwischen wichtige Beiträge zu Bereichen wie dem Monitoring von Infektionskrankheiten, Katastrophenschutz oder der Erkennung von Erdbeben. Anwendungen mit einem ökologischen Bezug existieren jedoch nur vereinzelt, und eine methodische Bearbeitung dieses Anwendungsbereichs fand bisher nicht statt. Unter Anwendung des Mikroblogging-Dienstes Twitter und des Beispiels eingebürgerter invasiver Arten in Waldökosystemen, verfolgt die vorliegende Arbeit eine solche methodische Bearbeitung und Bewertung sozialer Medien im Monitoring von Wäldern. Die automatische Analyse sozialer Medien wird dabei als opportunistisches „Citizen Science“-Modell betrachtet und die verfügbaren Daten, Aktivitäten und Teilnehmer einer vergleichenden Analyse mit existierenden bewusst geplanten „Citizen Science“-Projekten im Umweltmonitoring unterzogen. Die vorliegenden Ergebnisse zeigen, dass Twitter eine wertvolle Informationsquelle über invasive Arten darstellt und dass soziale Medien im Allgemeinen traditionelle Umweltinformationen ergänzen könnten. Twitter ist eine reichhaltige Quelle von primären Biodiversitätsbeobachtungen, einschließlich solcher zu eingebürgerten invasiven Arten. Zusätzlich kann gezeigt werden, dass die analysierten Twitterinhalte für die untersuchten Arten markante Themen- und Informationsprofile aufweisen, die wichtige Beiträge im Management invasiver Arten leisten können. Allgemein zeigt die Studie, dass einerseits das Potential von „Citizen Science“ im forstlichen Monitoring derzeit nicht ausgeschöpft wird, aber andererseits mit denjenigen Nutzern, die Biodiversitätsbeobachtungen auf Twitter teilen, eine große Zahl von Individuen mit einem Interesse an Umweltbeobachtungen zur Verfügung steht, die auf der Basis ihres dokumentierten Interesses unter Umständen für bewusst geplante „Citizen Science“-Projekte mobilisiert werden könnten. Zusammenfassend dokumentiert diese Studie, dass soziale Medien eine wertvolle Quelle für Umweltinformationen allgemein sind und eine verstärkte Untersuchung verdienen, letztlich mit dem Ziel, operative Systeme zur Unterstützung von Risikobewertungen in Echtzeit zu entwickeln.
9

A System Architecture for the Monitoring of Continuous Phenomena by Sensor Data Streams

Lorkowski, Peter 15 March 2019 (has links)
The monitoring of continuous phenomena like temperature, air pollution, precipitation, soil moisture etc. is of growing importance. Decreasing costs for sensors and associated infrastructure increase the availability of observational data. These data can only rarely be used directly for analysis, but need to be interpolated to cover a region in space and/or time without gaps. So the objective of monitoring in a broader sense is to provide data about the observed phenomenon in such an enhanced form. Notwithstanding the improvements in information and communication technology, monitoring always has to function under limited resources, namely: number of sensors, number of observations, computational capacity, time, data bandwidth, and storage space. To best exploit those limited resources, a monitoring system needs to strive for efficiency concerning sampling, hardware, algorithms, parameters, and storage formats. In that regard, this work proposes and evaluates solutions for several problems associated with the monitoring of continuous phenomena. Synthetic random fields can serve as reference models on which monitoring can be simulated and exactly evaluated. For this purpose, a generator is introduced that can create such fields with arbitrary dynamism and resolution. For efficient sampling, an estimator for the minimum density of observations is derived from the extension and dynamism of the observed field. In order to adapt the interpolation to the given observations, a generic algorithm for the fitting of kriging parameters is set out. A sequential model merging algorithm based on the kriging variance is introduced to mitigate big workloads and also to support subsequent and seamless updates of real-time models by new observations. For efficient storage utilization, a compression method is suggested. It is designed for the specific structure of field observations and supports progressive decompression. The unlimited diversity of possible configurations of the features above calls for an integrated approach for systematic variation and evaluation. A generic tool for organizing and manipulating configurational elements in arbitrary complex hierarchical structures is proposed. Beside the root mean square error (RMSE) as crucial quality indicator, also the computational workload is quantified in a manner that allows an analytical estimation of execution time for different parallel environments. In summary, a powerful framework for the monitoring of continuous phenomena is outlined. With its tools for systematic variation and evaluation it supports continuous efficiency improvement.

Page generated in 0.4759 seconds