Return to search

Circuit and System Design for mm-wave Radar and Radio Applications

Recent advancements in silicon technology have paved the way for the development of integrated transceivers operating well inside the mm-wave frequency range (30 - 300 GHz). This band offers opportunities for new applications such as remote sensing, short range radar, active imaging and multi-Gb/s radios. This thesis presents new ideas at the circuit and system level for a variety of such applications, up to 145 GHz and in both state-of-the-art nanoscale CMOS and SiGe BiCMOS technologies.

After reviewing the theory of operation behind linear and power amplifiers, a purely digital, scalable solution for power amplification that takes advantage of the significant ft/fmax improvement in pFETs as a result of strain engineering in nanoscale CMOS is presented. The proposed Class-D power amplifier, features a stacked, cascode CMOS inverter output stage, which facilitates high voltage operation while employing only thin-oxide devices in a 45 nm SOI CMOS process.

Next, a single-chip, 70-80 GHz wireless transceiver for last-mile point-to-point links is described. The transceiver was fabricated in a 130 nm SiGe BiCMOS technology and can operate at data rates in excess of 18 Gbps. The high bitrate is accomplished by taking advantage of the ample bandwidth available at the W-band frequency range, as well as by employing a direct QPSK modulator, which eliminates the need for separate upconversion and power amplification.

Lastly, the system and circuit level implementation of a mm-wave precision distance and velocity sensor at 122 and 145 GHz is presented. Both systems feature a heterodyne architecture to mitigate the receiver 1/f noise, as well as self-test and calibration capabilities along with simple packaging techniques to reduce the overall system cost.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/35988
Date13 August 2013
CreatorsSarkas, Ioannis
ContributorsVoinigescu, Sorin
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.018 seconds