• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43952
  • 14509
  • 11350
  • 6370
  • 5838
  • 3082
  • 1643
  • 1246
  • 976
  • 968
  • 968
  • 968
  • 968
  • 968
  • Tagged with
  • 43382
  • 8701
  • 6878
  • 6559
  • 6138
  • 5566
  • 5531
  • 5330
  • 5143
  • 5058
  • 4740
  • 4345
  • 3963
  • 3696
  • 2967
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

IDENTIFICATION OF KEY COMPONENTS FOR ASSESSING UNDERGRADUATE MATHEMATICS PROGRAMS

DUNLAP, LAURIE A. 29 September 2005 (has links)
No description available.
22

The didactisation practices in primary school mathematics teachers through modelling

Biccard, Piera 12 1900 (has links)
Thesis (PhD)-- Stellenbosch University, 2013. / ENGLISH ABSTRACT: Mathematics teacher development is a source of national and international concern. This study describes how primary school mathematics teachers develop didactisation practices. In considering how teachers could develop, so that student learning is optimised; the concepts of didactisation and the mathematical work of teaching were sourced from existing literature. The concept didactisation is explored and defined; and is incorporated with the concept of mathematical work of teaching. Nine practices were made explicit through this incorporation: active students, differentiation, mathematisation, vertically aligned lessons, access, probe, connect and assess student thinking, and teacher reflection. These nine practices become the framework for the professional development program and the data generation structure. Five primary school teachers were involved in a professional development program that used model-eliciting activities (MEAs) as a point of departure. A modelling perspective to teacher learning was chosen for the professional development program. The methodology followed the principles of design research and from this, a three phase teaching experiment was designed and implemented. The teachers and researcher met for development sessions and teachers were observed in practice at intervals throughout the program. Their developing didactisation practices were documented through a qualitative analysis of the data. It was established that teachers’ didactisation practices did develop during the nine-month program. Furthermore it was found that didactisation practices developed at different rates and consequently, a hierarchy of didactisation practice development is presented. The impact of the program was also gauged through teachers’ changing resources, goals and orientations. These three aspects also evolved over time. The program proposed in this study may be a suitable model to develop in-service and pre-service mathematics teachers. The study contributes to understanding teacher action in a classroom and how teachers can change their own thinking and practice. / AFRIKAANSE OPSOMMING: Die ontwikkeling van wiskundeonderwysers is ‘n bron van nasionale en internasionale kommer. Hierdie studie beskryf hoe die didaktiseringspraktyke van laerskool wiskundeonderwysers met die oog op optimalisering van leer ontwikkel het. In die bestudering van die ontwikkeling van onderwysers met die oog op optimalisering van leer, is die begrippe didaktisering en die wiskundige werk van onderrig (mathematical work of teaching) nagespoor uit bestaande literatuur. Die begrip didaktisering is deeglik ondersoek, gedefinieer en saamgevoeg met die begrip wiskundige werk van onderrig. Nege praktyke is eksplisiet gemaak deur hierdie inkorperering: aktiewe studente, differensiasie, matematisering, vertikaalgerigte lesse, toegang, indringende ondersoek, gekonnekteerdheid en assessering van studente-denke, en onderwyserrefleksie. Hierdie nege praktyke het die raamwerk gevorm vir die professionele ontwikkelingsprogram en die data genereringstruktuur. Vyf laerskool onderwysers was betrokke in ‘n professionele ontwikkelingsprogram waarin model-ontlokkende aktiwiteite (MOA’s) as ‘n vertrekpunt gebruik is. ‘n Modelleringsperspektief is vir onderwyserleer in die ontwikkelingsprogram gekies. Die metodologie volg die beginsels van ontwerpnavorsing waarna ‘n drie-fase onderrig-eksperiment ontwerp en in werking gestel is. Die navorser en die onderwysers het byeengekom vir ontwikkelingsessies; die onderwysers is op ‘n gereelde basis tydens die program besoek om hul onderwyspraktyk waar te neem. Hul ontwikkelende didaktiseringspraktyke is gedokumenteer en die data is kwalitatief geanaliseer. Onderwysers se didaktiseringspraktyke het wel gedurende die negemaande program ontwikkeling getoon. Hierdie didaktiseringspraktyke het egter teen verskillende tempo’s ontwikkel en daarom kon ‘n hierargie van die ontwikkeling van didaktiseringspraktyke saamgestel word. Die impak van hierdie program op onderwysers se veranderende hulpbronne, doelstellings en oriëntasies is ook gemeet. Die drie aspekte het in hierdie nege maande verder ontwikkel. Die voorgestelde program in hierdie studie mag moontlik ‘n gepaste model wees om indiens en voornemende wiskundeonderwysers te ontwikkel. Die studie lewer ‘n bydrae tot ‘n beter begrip van onderwyserhandelinge in ‘n klaskamer, asook hoe onderwysers hul eie denke en praktyke kan verander.
23

The process of mathematisation in mathematical modelling of number patterns in secondary school mathematics

Knott, Axanthe 12 1900 (has links)
Thesis (MEd)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Research has confirmed the educational value of mathematical modelling for learners of all abilities. The development of modelling competencies is essential in the modelling approach. Little research has been done to identify and develop the mathematising modelling competency for specific sections of the mathematics curriculum. The study investigates the development of mathematising competencies during the modelling of number pattern problems. The RME theory has been selected as the theoretical framework for the study because of its focus on mathematisation. Mathematising competencies are identified from current literature and developed into models for horizontal and vertical (complete) mathematisation. The complete mathematising competencies were developed for number patterns and mapped on a continuum. They are internalising, interpreting, structuring, symbolising, adjusting, organising and generalising. The study investigates the formulation of a hypothetical trajectory for algebra and its associated local instruction theory to describe how effectively learning occurs when the mathematising competencies are applied in the learning process. Guided reinvention, didactical phenomenology and emergent modelling are the three RME design heuristics to form an instructional theory and were integrated throughout the study to comply with the design-based research’s outcome: to develop a learning trajectory and the means to support the learning thereof. The results support research findings, that modelling competencies develop when learners partake in mathematical modelling and that a heterogeneous group of learners develop complete mathematising competencies through the learning of the modelling process. Recommendations for additional studies include investigations to measure the influence of mathematical modelling on individualised learning in secondary school mathematics. / AFRIKAANSE OPSOMMING: Navorsing steun die opvoedkundige waarde van modellering vir leerders met verskillende wiskundige vermoëns. Die ontwikkeling van modelleringsbevoegdhede is noodsaaklik in 'n modelleringsraamwerk. Daar is min navorsing wat die identifikasie en ontwikkeling van die bevoegdhede vir matematisering vir spesifieke afdelings van die wiskundekurrikulum beskryf. Die studie ondersoek die ontwikkeling van matematiseringsbevoegdhede tydens modellering van getalpatrone. Die Realistiese Wiskundeonderwysteorie is gekies as die teoretiese raamwerk vir die studie, omdat hierdie teorie die matematiseringsproses sentraal plaas. Matematiseringsbevoegdhede vanuit die bestaande literatuur is geïdentifiseer en ontwikkel tot modelle wat horisontale en vertikale (volledige) matematisering aandui. Hierdie matematiseringsbevoegdhede is spesifiek vir getalpatrone ontwikkel en op ‘n kontinuum geplaas. Hulle is internalisering, interpretasie, strukturering, simbolisering, aanpassing, organisering en veralgemening. Die studie lewer die formulering van ‘n hipotetiese leertrajek vir algebra, die gepaardgaande lokale onderrigteorie en beskryf hoe effektiewe leer plaasvind wanneer die ontwikkelde matematiseringsbevoegdhede volledig in die leerproses toegepas word. Die RME ontwikkellingsheuristieke, begeleidende herontdekking, didaktiese fenomenologie en ontluikende modellering, is geïntegreer in die studie sodat dit aan die uitkoms van ‘n ontwikkelingsondersoek voldoen. Die uitkoms is ‘n leertrajek en ‘n beskrywing hoe die leerproses ondersteun kan word. Die analise het tot die formulering van ‘n lokale-onderrig-teorie vir getalpatrone gelei. Die resultate van die studie kom ooreen met navorsingsbevindings dat modelleringsbevoegdhede ontwikkel wanneer leerders deelneem aan modelleringsaktiwiteite, en bewys dat ‘n groep leerders met gemengde vermoëns volledige matematiseringsbevoegdhede ontwikkel wanneer hulle deur die modelleringsproses werk. 'n Aanbeveling vir verdere navorsing is om die uitwerking van die modelleringsperspektief op individuele leer in hoërskool klaskamers te ondersoek.
24

Sebereflexe studentů učitelství matematiky / Self-reflection of Students in the Teaching of Mathematics

Štěpánová, Kateřina January 2007 (has links)
V teoretické části předkládané diplomové práce shrnuji dosavadní poznatky o profesi učitele, uvádím současné trendy v přípravném vzdělávání učitelů (PVU). Soustředím se především na tzv. reflektivní model PVU a možnosti rozvoje (sebe)reflektivní kompetence studentů učitelství. (Cílem takového PVU je absolvent - reflektivní praktik.) Analyzuji pojem reflexe a nahlížím na jeho úlohu v práci učitele. Klíčovým obdobím pro rozvoj sebereflexe studentů je podle odborníků (Švec, 2005, Nezvalová, 2000) období získávání pedagogických zkušeností (laboratorních i terénních). Nemalou úlohu v tomto procesu rozvoje sebereflexe mají vzdělavatelé učitelů na pedagogické fakultě, ale také učitelé, kteří vedou studenty během jejich souvislé pedagogické praxe (fakultní, resp. cviční učitelé). V empirické části práce se zabývám (sebe)reflektivní kompetencí budoucích učitelů matematiky z Pedagogické fakulty Univerzity Karlovy v Praze, zaměřuji se také na charakteristické nedostatky a přednosti pedagogické činnosti těchto studentů během souvislých praxí. Dále analyzuji pedagogické praxe z matematiky na PedF UK, zvláště jejich organizaci. Vycházím z písemných reflexí a sebereflexí studentů učitelství matematiky a z provedených dotazníkových šetření mezi studenty a jejich fakultními učiteli. V oddílu "R" empirické části této práce...
25

Mokyklinės matematikos mokymo(si) priemonė / The school mathematics tool for learning

Jaselskytė, Sonata 16 August 2007 (has links)
Mokyklinės matematikos mokymo(si) priemonė skirta vyresniųjų klasių moksleiviams, kurioje pateikta matematikos mokyklinio brandos egzamino temų teorija ir uždavinių pavyzdžiai, savikontrolės uždaviniai ir kontroliniai testai. / The mathematics tool for learning is targeted to the students of higher forms and includes the theory of particular topics and task examples, self-monitoring, check tests and assessment tasks.
26

Matematikos integravimas pagrindinėje mokykloje / Integration of mathematics in basic school

Aniulis, Andrius 09 July 2011 (has links)
Vilniaus universiteto Matematikos ir informatikos fakulteto studento Andriaus Aniulio magistriniame darbe trumpai apžvelgta integracijos procesos svarba dabartinės visuomenės ekonomikos ir politikos srityje, tačiau didžiausias dėmesys sutelktas į integracijos procesą, vykstantį bendrojo lavinimo mokyklose. Taigi integracijso procesas nėra tik globalinis procesas, aktualus valstybi valdyme, bet ir svarbus veiksnys, visuomenės formavime ir ugdyme Dėl jo vertės švietimo sistemoje diskutuojama jau nuo Antikos laikų, bet itin aktyviai paskutiniuosius 50 metų. Dabar jau prieita neginčijama nuomonė, kad tarpdalykinis (integruotas) mokymas suteikia mokiniams prasmingą atskirų mokomųjų dalykų supratimą. Juk gyvenime nėra atskirų dalykų, nes čia kartu prireikia ir ekonominkos, ir geografijos, ir matematikos žinių, todėl sėkmingiausios pamokos tos, kuriose jungiami (integruojami) du, trys ar keli dalykai. Norint atskleisti integracijso procesą bendrojo lavinimo mokyklose Lietuvoje, išanalizuotas vienas svarbiausių Lietuvos Švietimo ir mokslo ministerijos išleistas dokumentas ,,Atnaujintos pradinio ir pagrindinio ugdymo bendrosios programos“ (2009). Remiantis ir integracijos proceso istorija, bandoma pažvelgti į vidinę ir tarpdalykinę integraciją, vykstančią dabartinėse mokyklose. Tam tikslui pateikta anketa šešių Lietuvos mokyklų mokytojams ir ištirtas jų požiūris į integruotų pamokų tikslingumą. Visų tirtų mokyklų mokytojų dauguma pasisako už integruotas pamokas ir įžvelgia naudos:... [toliau žr. visą tekstą] / Vilnius University, Faculty of Mathematics and Computer Science student Andrius Aniulis in his theses briefly overviewed the importance of the integration process in the area of current public economics and politics, however the central focus was placed on the integration process in general education schools. Hence the integration process is not only a global process which is important in the governance of the state,but also it is an important factor which contributes to the formation and the education of the society.The discussions about the value of the integration process in educational system have taken place since ancient times, but they have been very active for the last 50 years. Now It is a common ground that an interdisciplinary (integrated) teaching provides students with a meaningful understanding of individual subjects. After all, life does not consist of separate things, in everyday life you need the knowledge of economics, geography, mathematics etc. for this reason the most successful lessons are those which connect (integrate) two, three or more subjects. In order to reveal the integration process in Lithuanian general education schools one of the most important documents issued by Lithuanian Ministry of Education was analyzed, 'Updated general programs of primary and lower secondary education' (2009). Based on the history of integration process the attempt is made to look at the internal and cross-curricular integration which is taking place in the current... [to full text]
27

Pirmieji žingsniai į aktuarinę matematiką / First steps into actuarial mathematics

Sinkutė, Donalda 02 July 2014 (has links)
Mūsų magistrinio darbo tema – „Pirmieji žingsniai į aktualinę matematiką“. Darbo tikslas – aktuarinės matematikos knygelės, skirtos vyresnių klasių vidurinių mokyklų, gimnazijų, licėjų, moksleiviams, rankraštis, kuris kartu būtų ir mokomoji medžiaga moksleiviams ir atsitiktinio skaitytojo pažintinė knygelė su gyvybės draudimu. Medžiagą knygelei atrinkome taip, kad dėstoma teorija atitiktų vidurinės mokyklos kursą, tema būtų aktuali, pateikta medžiaga, orientuota į Lietuvos draudimo rinkos dalyvį, sukurti uždaviniai būtų originalūs, patrauklūs, nuotaikingi, pateiktos medžiaga proporcingai išdėstyta laiko atžvilgiu, apimtis pritaikyta semestro programai. Pagrindinį dėmesį skyrėme paprasčiausiems gyvybės draudimo modeliams. Priklausomai nuo išmokos mokėjimo laiko paskutinį skyrių padalinome į du skyrelius: gyvybės draudimą, kai išmoka mokama iš karto po draudėjo mirties, arba taip vadinamą tolydų gyvybės draudimą, ir gyvybės draudimą, kai išmoka mokama draudėjo mirties metų pabaigoje, arba diskretų gyvybės draudimą. Kiekvienam atvejui analogiškai nagrinėjome tokius gyvybės draudimo modelius: viso gyvenimo gyvybės draudimą, n-metų terminuotą gyvybės draudimą ir n-metų kaupiamąjį gyvybės draudimą. Būtent uždaviniams ir pavyzdžiams knygelėje skyrėme didžiausią dėmesį ir daugiausiai laiko. Kadangi knygelė skirta Lietuvos skaitytojui, praktiniai uždaviniai taip pat orientuoti į Lietuvos draudimo rinkos dalyvius. Nors teorinė knygelės dalis tinka visų šalių (taip pat ir JAV, Rusijos... [toliau žr. visą tekstą] / The purpose of this work is the description of actuarial mathematics in more common way for students of secondary school. With the basic topic – life insurance – we want them to take a look at a small part of big actuarial world. In fact, we introduce the readers with different ways of onetime instalment calculation, which depends on insurance benefit, terms of the contract, age and time of death of the insured. Regarding to time of death, we bring to the fore two cases of life insurances: insurances payable at the moment of death and insurances payable immediately on death. Later we mainly divide the theory into whole-life insurance, n-year term life insurance and n-year endowment life insurance. In our textbook we give descriptions of main actuarial values. Also there are plenty of problems to solve in order to soak up the given theory of life insurance. We do our best to simplify the readers’ approach to actuarial mathematics.
28

Pojistná matematika v neživotním pojištění / Actuarial Mathematics in Non Life InsurancePojistná matematika

Jedlička, Petr January 2008 (has links)
No description available.
29

Multimodalt matematiklärande i förskoleklass / A multimodal mathematics teaching in pre-school class

Larsson, Mikaela, Jablonska, Nicole January 2022 (has links)
No description available.
30

Sammenhenger mellom elevers motivasjon for matematikk og den undervisningen de erfarer / Connections between Students'’ motivation for Mathematics and the Teaching they experience

Kvikne, Hild Mari January 2011 (has links)
Studien har til hensikt å undersøke elevers motivasjon for matematikk. Mer spesifikt hvilke sammenhenger det kan være mellom elevenes målorientering i matematikk og den undervisningspraksisen de erfarer i faget. Studiens overordende problemstilling er: Hvilke sammenhenger kan det være mellom elevers motivasjon for matematikk og den undervisningspraksisen de erfarer i faget? Målet med studien er å få innsikt i ulike faktorer som kan legge til rette for elevers motivasjon for matematikk. Elevenes målorientering deles inn i to hovedretninger, prestasjonsmål og læringsmål. Videre vurderes det hvorvidt målene er tilnærmingsprestasjonsmål, unngåelsesprestasjonsmål, læringsmål om instrumentell forståelse eller læringsmål om relasjonell forståelse.For å få svar på problemstillingen oppsøkes to matematikklasser ved ulike videregående skoler. Ved den ene skolen arbeider klassen med matematikk på en tradisjonell måte. Klassen ved den andre skolen arbeider med undersøkende matematikk. I begge klassene blir undervisningen observert og analysert i forhold til sju analysekategorier; læring, prestasjon, autonomi, oppgave, entusiasme, affekt og riskstøttende. Et utvalg på to elever fra hver klasse intervjues. Intervjuene analyseres ved hjelp av motivasjonsvariabler med hensikt å finne ut hvilke mål elevene har i matematikk.Resultatene fra studien indikerer at det er forskjeller på elevenes mål når de erfarer ulike former for matematikkundervisning. I klassen med tradisjonell undervisning vektlegger læreren instrumentell forståelse og oppgavene har til hensikt å øve inn spesifikke løsningsmetoder. Elevene i klassen har mål om å oppnå en god karakter i matematikk. I klassen med undersøkende matematikk fokuserer læreren på relasjonell forståelse og oppgavene får elevene til selv å finne mønster og systemer. Elevene i klassen har mål om relasjonell forståelse. Studien indikerer at det er forskjeller på undervisningspraksisene innenfor kategoriene læring, prestasjon, autonomi, oppgave og riskstøttende.

Page generated in 0.1767 seconds