• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43953
  • 14509
  • 11351
  • 6370
  • 5838
  • 3082
  • 1643
  • 1246
  • 976
  • 968
  • 968
  • 968
  • 968
  • 968
  • Tagged with
  • 43385
  • 8702
  • 6878
  • 6559
  • 6138
  • 5566
  • 5531
  • 5330
  • 5143
  • 5059
  • 4740
  • 4345
  • 3964
  • 3696
  • 2967
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

What is mathematical about mathematics?

Magal, Oran January 2013 (has links)
During a crucial period in the formation of modern-day pure mathematics, Georg Cantor wrote that "the essence of mathematics lies precisely in its freedom". Similarly, David Hilbert, in his landmark work on the axiomatization of geometry, took the view that we are free to interpret the axioms of a mathematical theory as being about whatever can be made to satisfy them, independently of pre-axiomatic ideas, seemingly intuitive truths, or typical empirical scientific applications of that theory. Cantor's and Hilbert's emphasis on the independence of pure mathematics from philosophical preconceptions, empirical applications, and so on raises the question: what is it about?In this dissertation, I argue that essential to mathematics is a certain kind of structural abstraction, which I characterise in detail; furthermore, I maintain that this abstraction has to do with combination and manipulation of symbols. At the same time, I argue that essential to mathematics is also a certain kind of conceptual reflection, and that there is a sense in which mathematics can be said to be a body of truths by virtue of the meaning of its concepts. I argue further that a certain ongoing interplay of intuitive content on the one hand and abstraction or idealization on the other hand plays a significant part in shaping pure mathematics into its modern, axiomatic form. These arguments are made in the course of analyzing and building on the work of both historical and contemporary figures. / À une période cruciale de la formation des mathématiques pures modernes, Georg Cantor déclara que « l'essence des mathématiques, c'est la liberté ». De même, David Hilbert, dont l'oeuvre sur l'axiomatisation de la géométrie fut une étape charnière de l'élaboration des mathématiques modernes, soutenait que nous sommes libres d'interpréter les axiomes d'une théorie mathématique comme se rapportant à tout objet qui leur est conforme, indépendemment des idés préconçues, de ce qui semble intuitivement vrai et des applications scientifiques habituelles de la théorie en question. L'emphase que mettent Cantor et Hilbert sur l'indépendance des mathématiques pures des conceptions philosophiques préalables et des applications empiriques suscite la question: sur quoi, au fond, portent les mathématiques?Dans cette dissertation, je soutiens qu'une certaine forme d'abstraction structurelle, que je décris en détail, est essentielle aux mathématiques; de plus, je maintiens qu'à la base de cette abstraction sont la combinaison et la manipulation de symboles. En même temps, j'estime qu'au coeur des mathématiques est aussi un certain type de réflexion conceptuelle et qu'il existe un sens dans lequel les mathématiques sont un ensemble de vérités en vertu de la signification de leurs concepts. Je conclue qu'une intéraction continue entre le contenu intuitif d'un côté et l'abstraction ou l'idéalisation de l'autre joue un rôle important dans le développement des mathématiques axiomatiques modernes. J'avance ces arguments sur la base d'une analyse de travaux tant historiques que contemporains.
12

Darboux integrability of wave maps into 2-dimensional Riemannian manifolds

Ream, Robert, January 1900 (has links)
Thesis (M.S.)--Utah State University, 2008. / Title from title screen (viewed Aug. 11, 2009). Department: Mathematics and Statistics. Includes bibliographical references. Archival copy available in print.
13

The classification of some fuzzy subgroups of finite groups under a natural equivalence and its extension, with particular emphasis on the number of equivalence classes

Ndiweni, Odilo January 2007 (has links)
In this thesis we use the natural equivalence of fuzzy subgroups studied by Murali and Makamba [25] to characterize fuzzy subgroups of some finite groups. We focus on the determination of the number of equivalence classes of fuzzy subgroups of some selected finite groups using this equivalence relation and its extension. Firstly we give a brief discussion on the theory of fuzzy sets and fuzzy subgroups. We prove a few properties of fuzzy sets and fuzzy subgroups. We then introduce the selected groups namely the symmetric group 3 S , dihedral group 4 D , the quaternion group Q8 , cyclic p-group pn G = Z/ , pn qm G = Z/ + Z/ , p q r G Z Z Z n m = / + / + / and pn qm r s G = Z/ + Z/ + Z/ where p,q and r are distinct primes and n,m, s Î N/ . We also present their subgroups structures and construct lattice diagrams of subgroups in order to study their maximal chains. We compute the number of maximal chains and give a brief explanation on how the maximal chains are used in the determination of the number of equivalence classes of fuzzy subgroups. In determining the number of equivalence classes of fuzzy subgroups of a group, we first list down all the maximal chains of the group. Secondly we pick any maximal chain and compute the number of distinct fuzzy subgroups represented by that maximal chain, expressing each fuzzy subgroup in the form of a keychain. Thereafter we pick the next maximal chain and count the number of equivalence classes of fuzzy subgroups not counted in the first chain. We proceed inductively until all the maximal chains have been exhausted. The total number of fuzzy subgroups obtained in all the maximal chains represents the number of equivalence classes of fuzzy subgroups for the entire group, (see sections 3.2.1, 3.2.2, 3.2.6, 3.2.8, 3.2.9, 3.2.15, 3.16 and 3.17 for the case of selected finite groups). We study, establish and prove the formulae for the number of maximal chains for the groups pn qm G = Z/ + Z/ , p q r G Z Z Z n m = / + / + / and pn qm r s G = Z/ + Z/ + Z/ where p,q and r are distinct primes and n,m, s Î N/ . To accomplish this, we use lattice diagrams of subgroups of these groups to identify the maximal chains. For instance, the group pn qm G = Z/ + Z/ would require the use of a 2- dimensional rectangular diagram (see section 3.2.18 and 5.3.5), while for the group pn qm r s G = Z/ + Z/ + Z/ we execute 3- dimensional lattice diagrams of subgroups (see section 5.4.2, 5.4.3, 5.4.4, 5.4.5 and 5.4.6). It is through these lattice diagrams that we identify routes through which to carry out the extensions. Since fuzzy subgroups represented by maximal chains are viewed as keychains, we give a brief discussion on the notion of keychains, pins and their extensions. We present propositions and proofs on why this counting technique is justifiable. We derive and prove formulae for the number of equivalence classes of the groups pn qm G = Z/ + Z/ , p q r G Z Z Z n m = / + / + / and pn qm r s G = Z/ + Z/ + Z/ where p,q and r are distinct primes and n,m, s Î N/ . We give a detailed explanation and illustrations on how this keychain extension principle works in Chapter Five. We conclude by giving specific illustrations on how we compute the number of equivalence classes of a fuzzy subgroup for the group p2 q2 r 2 G = Z/ + Z/ + Z/ from the number of fuzzy subgroups of the group p q r G = Z/ + Z/ + Z/ 1 2 2 . This illustrates a general technique of computing the number of fuzzy subgroups of G = Z/ + Z/ + Z/ from the number of fuzzy subgroups of 1 -1 = / + / + / pn qm r s G Z Z Z . Our illustration also shows two ways of extending from a lattice diagram of 1 G to that of G .
14

Qualitative and quantitative properties of solutions of ordinary differential equations

Ogundare, Babatunde Sunday January 2009 (has links)
This thesis is concerned with the qualitative and quantitative properties of solutions of certain classes of ordinary di erential equations (ODEs); in particular linear boundary value problems of second order ODE's and non-linear ODEs of order at most four. The Lyapunov's second method of special functions called Lyapunov functions are employed extensively in this thesis. We construct suitable complete Lyapunov functions to discuss the qualitative properties of solutions to certain classes of non-linear ordinary di erential equations considered. Though there is no unique way of constructing Lyapunov functions, We adopt Cartwright's method to construct complete Lyapunov functions that are required in this thesis. Su cient conditions were established to discuss the qualitative properties such as boundedness, convergence, periodicity and stability of the classes of equations of our focus. Another aspect of this thesis is on the quantitative properties of solutions. New scheme based on interpolation and collocation is derived for solving initial value problem of ODEs. This scheme is derived from the general method of deriving the spline functions. Also by exploiting the Trigonometric identity property of the Chebyshev polynomials, We develop a new scheme for approximating the solutions of two-point boundary value problems. These schemes are user-friendly, easy to develop algorithm (computer program) and execute. They compare favorably with known standard methods used in solving the classes of problems they were derived for
15

Intuizione e visualizzazione in matematica con particolare riferimento a Felix Klein / Intuition and visualization in mathematics with particular reference to Felix Klein

Muttini, Daniele <1976> 19 November 2012 (has links)
Questo lavoro trae spunto da un rinnovato interesse per l’«intuizione» e il «pensiero visivo» in matematica, e intende offrire un contributo alla discussione contemporanea su tali questioni attraverso lo studio del caso storico di Felix Klein. Dopo una breve ricognizione di alcuni dei saggi più significativi al riguardo, provenienti sia dalla filosofia della matematica, sia dalla pedagogia, dalle neuroscienze e dalle scienze cognitive, l’attenzione si concentra sulla concezione epistemologia di Klein, con particolare riferimento al suo uso del concetto di ‘intuizione’. Dai suoi lavori e dalla sua riflessione critica si ricavano non solo considerazioni illuminanti sulla fecondità di un approccio «visivo», ma argomenti convincenti a sostegno del ruolo cruciale dell’intuizione in matematica. / Arising from the renewed interest in ‘intuition’ and ‘visual thinking’ in mathematics, this work intends to take part to the contemporary debate on these topics by investigating the ‘historical case’ of Felix Klein. After a brief survey of studies both from philosophy of mathematics and from neuroscience, pedagogy, and cognitive sciences, that have contributed to such revival, the attention is focused on Klein’s epistemological views, with particular reference to his use of the concept of intuition. The analysis aims at clarifying how his reflections provide not only ingenious observations on the effectiveness of a ‘visual’ approach, but also convincing arguments to support the crucial role of intuition in mathematics.
16

Unequal participation in mathematics and science education = Ongelijke deelname aan exacte vakken en studierichtingen /

Langen, Antonetta Maria Lamberdina van. January 2005 (has links) (PDF)
Radboud Univ., Diss.--Nijmegen, 2005. / Zsfassung in niederl. Sprache.
17

Teacher goal endorsement, student achievement goals, and student achievement in mathematics: a longitudinal study

Deevers, Matthew D. 23 July 2010 (has links)
No description available.
18

Topics in the mathematics of disordered media

Duerinckx, Mitia 21 December 2017 (has links)
Cette thèse est consacrée à l’étude mathématique des effets de désordre dans divers systèmes physiques. On commence par trois problèmes d’homogénéisation stochastique en lien avec des questions statiques de physique classique. Premièrement, en vue de la déduction rigoureuse de l’élasticité non-linéaire à partir de la physique statistique de réseaux de chaînes de polymères, on établit l’existence de propriétés effectives pour des matériaux hyperélastiques hétérogènes aléatoires sous des hypothèses générales de croissance. Deuxièmement, dans un cadre linéarisé simplifié, on étudie les formules de Clausius-Mossotti pour les propriétés effectives d’alliages binaires dilués: on donne la première preuve générale et rigoureuse de ces formules, ainsi qu’une extension aux ordres supérieurs. Troisièmement, encore pour des systèmes linéarisés, on propose d’étudier les déviations par rapport aux propriétés effectives et on établit la première théorie générale des fluctuations en homogénéisation stochastique. Dans la seconde partie de cette thèse, on se focalise sur la compétition entre désordre et interactions, et on étudie plus particulièrement la dynamique des vortex de Ginzburg-Landau dans des supraconducteurs 2D de type II en présence d’impuretés. Bien que la compréhension mathématique des propriétés vitreuses complexes de ces systèmes semble hors de portée, on établit rigoureusement la limite de champ moyen pour la dynamique d’un grand nombre de vortex, et on étudie l’homogénéisation de ces équations limites et leurs propriétés. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
19

Applying realistic mathematics education in Vietnam : teaching middle school geometry

Le, Tuan Anh January 2006 (has links)
Since 1971, the Freudenthal Institute has developed an approach to mathematics education named Realistic Mathematics Education (RME). The philosophy of RME is based on Hans Freudenthal’s concept of ‘mathematics as a human activity’. Prof. Hans Freudenthal (1905-1990), a mathematician and educator, believes that ‘ready-made mathematics’ should not be taught in school. By contrast, he urges that students should be offered ‘realistic situations’ so that they can rediscover from informal to formal mathematics. Although mathematics education in Vietnam has some achievements, it still encounters several challenges. Recently, the reform of teaching methods has become an urgent task in Vietnam. It appears that Vietnamese mathematics education lacks necessary theoretical frameworks. At first sight, the philosophy of RME is suitable for the orientation of the teaching method reform in Vietnam. However, the potential of RME for mathematics education as well as the ability of applying RME to teaching mathematics is still questionable in Vietnam. The primary aim of this dissertation is to research into abilities of applying RME to teaching and learning mathematics in Vietnam and to answer the question “how could RME enrich Vietnamese mathematics education?”. This research will emphasize teaching geometry in Vietnamese middle school. More specifically, the dissertation will implement the following research tasks: • Analyzing the characteristics of Vietnamese mathematics education in the ‘reformed’ period (from the early 1980s to the early 2000s) and at present; • Implementing a survey of 152 middle school teachers’ ideas from several Vietnamese provinces and cities about Vietnamese mathematics education; • Analyzing RME, including Freudenthal’s viewpoints for RME and the characteristics of RME; • Discussing how to design RME-based lessons and how to apply these lessons to teaching and learning in Vietnam; • Experimenting RME-based lessons in a Vietnamese middle school; • Analyzing the feedback from the students’ worksheets and the teachers’ reports, including the potentials of RME-based lessons for Vietnamese middle school and the difficulties the teachers and their students encountered with RME-based lessons; • Discussing proposals for applying RME-based lessons to teaching and learning mathematics in Vietnam, including making suggestions for teachers who will apply these lessons to their teaching and designing courses for in-service teachers and teachers-in training. This research reveals that although teachers and students may encounter some obstacles while teaching and learning with RME-based lesson, RME could become a potential approach for mathematics education and could be effectively applied to teaching and learning mathematics in Vietnamese school. / Seit 1971 wurde an dem renommierten Freudenthal Institut in Utrecht ein als Realistic Mathematics Education (RME) bezeichneter mathematikdidaktischer Ansatz entwickelt. Die Philosophie von RME beruht auf Hans Freudenthals Auffassung von Mathematik als menschlicher Aktivität. Der Mathematiker und Didaktiker Prof. Hans Freudenthal (1905 – 1990) plädierte dafür, dass Mathematik an den Schulen nicht als Fertigprodukt unterrichtet werden sollte. Im Gegensatz dazu forderte er, den Schülern an ‚realistischen’ Situationen nicht-formale und formale Mathematik wieder entdecken zu lassen. Obwohl die mathematische Schulbildung in Vietnam in den letzten Jahrzehnten schon einige Fortschritte gemacht hat, steht sie noch vor großen Herausforderungen. Derzeit ist die Reform der Unterrichtsmethoden eine dringliche Aufgabe in Vietnam. Augenscheinlich ermangelt es der Mathematikdidaktik in Vietnam an dem dazu notwendigen theoretischen Rahmen. Die Philosophie von RME eignet sich grundsätzlich als Orientierung für die Reform der Unterrichtsmethoden in Vietnam. Allerdings ist die Potenz von RME für die mathematische Schulbildung in Vietnam und die Möglichkeiten, RME im Mathematikunterricht anzuwenden, noch zu klären. Das Hauptziel dieser Arbeit war zu erforschen, wie RME beim Mathematik-Lernen und -Lehren in Vietnam eingesetzt werden kann und die Frage zu beantworten: Wie kann RME den Mathematikunterricht in Vietnam bereichern? Dazu wurde insbesondere der Geometrieunterricht in der Sekundarstufe I betrachtet. Im Einzelnen beinhaltet die Untersuchung: • eine Analyse der vietnamesischen Mathematikdidaktik in der ‘Reformperiode’ (etwa von 1980 bis 2000) • die Konzeption, Durchführung und Auswertung einer Befragung von 152 Mittelschullehrern aus verschiedenen vietnamesischen Provinzen und Städten zum Mathematikunterricht in Vietnam • eine Analyse von RME einschließlich der Freudenthalschen Sicht von RME und der Charakteristika von RME • die Diskussion, wie man RME-basierten Unterrichtseinheiten gestalten und diese in den Mathematikunterricht in Vietnam integrieren kann • Test solcher Einheiten in vietnamesischen Mittelschulen • Analyse der Rückmeldungen anhand der Schülerarbeitsblätter und der Lehrerberichte • Diskussion der Chancen und Probleme von RME-basierten Unterrichtseinheiten im Geometrieunterricht vietnamesischer Mittelschulen • Diskussion von Vorschläge zur Entwicklung und zum Einsatz RME- basierter Unterrichtseinheiten in Vietnam, einschließlich von Hinweisen für Lehrende und der Konzeption von Ausbildungs- und Fortbildungskursen zu RME Die Untersuchung zeigt, dass – obwohl Lehrer wie Schüler zunächst einige Hindernisse beim Lehren und Lernen mit RME- basierten Unterrichtseinheiten zu bewältigen haben werden – RME ein mächtiger mathematikdidaktischer Ansatz ist, der wirkungsvoll im Lehren und Lernen von Mathematik in vietnamesischen Schulen angewandt werden kann.
20

AN EXAMINATION OF HOW VISUAL PERCEPTION ABILITIES INFLUENCE MATHEMATICS ACHIEVEMENT

ROHDE, TREENA EILEEN, M.A. January 2008 (has links)
No description available.

Page generated in 0.1584 seconds