• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 199
  • 40
  • 31
  • 19
  • 17
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 417
  • 103
  • 68
  • 57
  • 43
  • 40
  • 35
  • 35
  • 34
  • 34
  • 33
  • 30
  • 29
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Potentials of oxymethylene-dimethyl-ether in diesel engine combustion

Saupe, Christopher, Atzler, Frank 04 June 2024 (has links)
The increasing CO2 concentration in the atmosphere and the resulting climate change require an immediate and efficient reduction of anthropogenic carbon-dioxide emission. This target can be achieved by the usage of CO2-neutral fuels even with current technologies (Schemme et al. in Int J Hydrogen Energy 45:5395–5414, 2020). Diesel engines in particular are amongst the most efficient prime movers. Using oxymethylene-dimethyl-ether (OME) it is possible to solve the hitherto existing Soot-NOx-Trade-off. OME has bounded oxygen in the molecular chain. This reduces the formation of soot, but equally the calorific value. But in considerance of the physical and chemical properties of OME, it could be useful to optimize the standard diesel engine into an OME engine. As a result, single-cylinder tests were performed to obtain a detailed analysis of the differences between OME3-5 and commercially available DIN EN 590 Diesel. Based on the fact that OME has gravimetrically less than half the calorific value of diesel, twice the fuel mass must be injected for the same energy release in the combustion chamber. Therefore, at the beginning of the investigations, a variation of the injector flow rate was carried out by means of different nozzle hole diameters. The evaluation of the results included the fundamental differences in the combustion characteristics of both fuels and the determination of efficiency-increasing potentials in the conversion of OME3-5. Due to the lower ignition delay and the shorter combustion time of OME, potentials in the optimisation of the injection setting became apparent. Higher energy flows over the combustion chamber wall were noticeable in operation with OME. To get to the bottom of this, the single-cylinder investigations were supported by tests on the optically accessible high-pressure chamber and the single-cylinder transparent engine. The optical images showed a narrower cone angle and greater penetration depth of the OME injection jet compared to the diesel injection jet. This confirmed the results from the single-cylinder tests. This provides further potential in the design of the injector nozzle to compensate for these deficits. Overall, this work shows that operation with OME in a classic diesel engine is possible without any significant loss in efficiency and with little effort in the hardware. However, it is also possible to achieve more efficient use of the synthetic fuel with minor adjustments.
352

Synthesis and Characterization of Multiblock Copolymers for Proton Exchange Membrane Fuel Cells (PEMFC)

Wang, Hang 25 January 2007 (has links)
Nanophase-separated hydrophilic-hydrophobic multiblock copolymers are promising proton exchange membrane (PEM) materials due to their ability to form various morphological structures which enhance transport. Four arylene chlorides monomers (2,5-Dichlorobenzophenone and its derivatives) were first successfully synthesized from aluminum chloride-catalyzed, Friedel-Crafts acylation of benzene and various aromatic compounds with 2,5-dichlorobenzoyl chloride. These monomers were then polymerized via Ni (0)-catalyzed coupling reaction to form various high molecular weight substituted poly(2,5-benzophenone)s. Great care must be taken to achieve anhydrous and inert conditions during the reaction. A series of poly(2,5-benzophenone) activated aryl fluoride telechelic oligomers with different block molecular weights were then successfully synthesized by Ni (0)- catalyzed coupling of 2,5-dichloro-benzophenone and the end-capping agent 4-chloro-4'-fluorobenzophenone or 4-chlorophenly-4′-fluorophenyl sulfone. The molecular weights of these oligomers were readily controlled by altering the amount of end-capping agent. These telechelic oligomers (hydrophobic) were then copolymerized with phenoxide terminated disulfonated poly (arylene ether sulfone)s (hydrophilic) by nucleophilic aromatic substitution to form novel hydrophilic-hydrophobic multiblock copolymers. A series of novel multiblock copolymers with number average block lengths ranging from 3,000 to 10,000 g/mol were successfully synthesized. Two separate Tgs were observed via DSC in the transparent multiblock copolymer films when each block length was longer than 6,000 g/mol (6k). Tapping mode atomic force microscopy (AFM) also showed clear nanophase separation between the hydrophilic and hydrophobic domains and the influence of block length, as one increased from 6k to 10k. Transparent and creasable films were solvent-cast and exhibited good proton conductivity and low water uptake. These PAES-PBP multiblock copolymers also showed much less relative humidity (RH) dependence than random sulfonated aromatic copolymers BPSH 35 in proton conductivity, with values that were almost the same as Nafion with decreasing RHs. This phenomenon lies in the fact that this multiblock copolymer possesses a unique co-continuous nanophase separated morphology, as confirmed by AFM and DSC data. Since this unique co-continuous morphology (interconnected channels and networks) dramatically facilitates the proton transport (increase the diffusion coefficient of water), improved proton conductivity under partially hydrated conditions becomes feasible. These multiblock copolymers are therefore considered to be very promising candidates for high temperature proton exchange membranes in fuel cells. / Ph. D.
353

High Performance Disulfonated Poly(arylene Sulfone) Co- and Terpolymers For Proton Exchange Membranes For Fuel Cell And Transducer Applications: Synthesis, Characterization And Fabrication Of Ion Conducting Membranes

Wiles, Kenton Broyhill 26 April 2005 (has links)
The results described in this dissertation have demonstrated several alternative proton exchange membranes (PEM) for hydrogen-air and direct methanol fuel cells (DMFC) that perform as well or better than the state of the art Nafion perfluorosulfonic acid membrane. Direct aromatic nucleophilic substitution polycondensations of disodium 3,3′ S-disulfonate-4,4′ S-difluorodiphenylsulfone (SDFDPS), 4,4′ S-difluorodiphenylsulfone (DFDPS) (or their chlorinated analogs, SDCDPS, DCDPS) and 4,4′ S-thiobisbenzenethiol (TBBT) in the presence of potassium carbonate were investigated. Electrophilic aromatic substitution was employed to synthesize the SDFDPS or SDCDPS comonomers in high yields and purity. High molecular weight disulfonated poly(arylene thioether sulfone) (PATS) copolymers were easily obtained using the SDFDPS monomers, but in general, slower rates and a lower molecular weight copolymer was obtained using the analogous chlorinated monomers. Tough and ductile membranes were solution cast from N,N-dimethylacetamide for both series of copolymers. The degrees of disulfonation (20-50%, PATS 20-50) were controlled by varying the ratio of disulfonated to unsulfonated comonomers. Composite membranes were prepared by homogeneous solution blending the copolymers with phosphotungstic acid (PTA) in dimethylacetamide (DMAc). The composite PATS membranes exhibited moderate PTA molecule water extraction after acidification treatments performed at either room or boiling temperatures. The membranes containing HPA showed improved conductivity at high temperatures (120 °C) and low relative humidities when compared to the pure copolymers. Molecular weight of the copolymers plays a critical role in the overall copolymer physical behavior. It is well known that molecular weight has an enormous impact on practically all of the physical properties of polymeric systems. This dissertation discusses the influence of molecular weight on the characteristics of a specific family of PEM PATS copolymers. This study elucidated that the lower molecular weight materials did indeed behave differently than the higher molecular weight copolymers. Specifically, the water uptake and permeability to methanol decreased with increasing molecular weight. Furthermore, the fully hydrated mechanical properties also improved with molecular weight. The synthesis and fabrication of 45 mole percent disulfonated poly(arylene ether phenyl phosphine oxide diphenyl sulfone) terpolymer-heteropolyacid (HPA) composite membranes and membrane electrode assemblies were chosen for detailed investigation. A series of 45 mole percent disulfonated biphenol-based poly(arylene ether phenyl phosphine oxide diphenyl sulfone) terpolymers (BPSH45-PPO) were also synthesized by nucleophilic aromatic substitution polymerizations. The level of disulfonation was constant at 45 mole percent providing a compromise between high conductivity at low humidity and reasonable mechanical properties in liquid water. The amounts of 4,4′-difluorodiphenyl phenyl phosphine oxide comonomer incorporated into the terpolymer backbone were precisely controlled from 0-50 mole percent relative to the 4,4′-dihalodiphenyl sulfone. Phosphine oxide moieties were employed to enhance the interactions with the PTA relative to the pure copolymer. The composite BPSH45-PPO membranes exhibited lower HPA molecule water extraction after acidification at room and boiling temperatures, which was ascribed to the strong hydrogen and polar interactions between the phosphine oxide moiety and functional groups on the HPA. The membranes containing HPA displayed improved conductivity at high temperatures and low relative humidities when compared to the pure terpolymer samples. The increase of proton conductivity was attributed to the water retention characteristics of the HPA molecules, which allowed enhanced mobility of the protons even at lower humidification levels, providing superior hydrogen-air fuel cell performance. The effect of hexafluoroisopropylidene bisphenol (6FBP) incorporation into 45 mole percent disulfonated poly(arylene ether sulfone) copolymers was investigated. This novel series of directly disulfonated poly(arylene ether sulfone) copolymers with various mole ratios of the 6FBP were synthesized in high molecular weight. The levels of fluorination within the statistically random copolymer architecture were varied from 0-100 mole percent using 6FBP and the correct stoichiometric amount of 4,4′-biphenol. The 6FBP monomer was introduced to decrease the water swelling and improve bonding characteristics with Nafion-bonded electrodes. Indeed, water uptake decreased with increasing incorporation of the 6FBP monomer into the terpolymer. This suggested that the hydrophobic fluorinated material aided in water repulsion of the system. Proton conductivity decreased slightly as the amount of fluorination increased, which was interpreted to be due to the decrease in the ion-exchange capacity. High temperature hydrogen/air fuel cell experiments indicated better Nafion-bonded electrode adhesion for the partially fluorinated materials, as depicted by high temperature (120 °C) and low humidity (50% RH) hydrogen-air fuel cell performance. Investigations into polymeric electromechanical transducers were based on poly(arylene sulfone) ion-exchange membranes bonded between two conductive metal layer electrodes. Imposed deformations and small electric fields allowed similar explorations of both sensing and actuation applications. These copolymers produced larger sensitivities than the benchmark Nafion systems, which was interpreted as being due to their higher hydrated moduli. Methodologies for better defining the morphology of the electrodes were identified to enhance the capacitance and effective interfacial area of the conductive electrodes. The new procedures afforded major improvements to performance and transduction. Transducer actuation at lower frequencies was improved by employing a new direct assembly electrode fabrication technique that suggested a strong correlation between the capacitance and charge motion. / Ph. D.
354

Design, Preparation and Characterization of Novel Pseudorotaxanes, Semirotaxanes, Rotaxanes, Non-Covalent Supramolecular Polymers and Polycatenanes

Niu, Zhenbin 17 October 2011 (has links)
Design and preparation of novel host/guest systems, such as pseudorotaxanes, semirotaxanes, rotaxanes and catenanes, with high association constants, enhanced yields and the abilities to respond to external stimuli are of great importance and significance due to their topological novelty and potential application. The convergence of supramolecular chemistry with polymer science provides an important way to extend the scope of polymer and material sciences by incorporating designed host/guest systems into polymers, and the resulting non-covalently linked supramolecular polymers are expected to have unusual properties due to their unique architectures compared with traditional polymers. After discovery of bis(meta-phenylene)-32-crown-10 (BMP32C10) derivative/paraquat complexes, for about a quarter century only “taco”-shaped complexes were observed by X-ray crystallography. Here, by the self-assembly of a BMP32C10 bearing two electron-donating groups (carbazoles) with electron-accepting paraquat derivatives, the first [2]pseudorotaxane and the first pseudocryptand-type poly[2]pseudorotaxane based on BMP32C10 were isolated as crystalline solids as shown by X-ray analyses. The first dual component pseudocryptand-type [2]pseudorotaxanes were designed and prepared via the self-assembly of synthetically easily accessible BMP32C10 pyridyl, quinolyl and naphthyridyl derivatives with paraquat. The formation of the pseudocryptand structures in the complexes remarkably improved the association constants by forming the third pseudo-bridge via H-bonding with the guest and π-stacking of the heterocyclic units. A pseudocryptand-type [2]pseudorotaxane was formed via the self-assembly of a dipyridyl BMP32C10 derivative and a paraquat derivative. Due to the basicity of the pyridyl group, which forms the third pseudo-bridge of the pseudocryptand, this pseudorotaxane represents the first system with acid-base adjustable association constants, i. e., finite both under acidic and neutral conditions. The first pseudocryptand-type supramolecular [3]pseudorotaxane was designed and prepared via the self-assembly of a bispicolinate BMP32C10 derivative and a bisparaquat. The complexation behavior was cooperative. In addition, the complex comprised of the BMP32C10 derivative and a cyclic bisparaquat demonstrated strong binding; interestingly, a poly[2]pseudocatenane structure was formed in the solid state for the first time. Two novel BMP32C10 cryptands, bearing covalent and metal complex linkages, were designed and prepared. By employing the self-assembly of these biscryptands, which can be viewed as AA monomers, and a bisparaquat, which can be viewed as a BB monomer, the first AA/BB-type linear supramolecular polymers with relatively high molecular weights were successfully prepared. Via the self-assembly of two BMP32C10-based cryptands, bearing covalent and metal complex (ferrocene) linkages, with dimethyl paraquat, novel [3]pseudorotaxanes were formed statistically and anticooperatively, respectively. From a hydroxyl-functionalized secondary ammonium salt a [2]semirotaxane and a [2]rotaxane were prepared successfully with dibenzo-24-crown-8 (DB24C8). X-ray analysis of a single crystal of the [2]semirotaxane confirmed its semirotaxane nature. In addition, the formation of the [2]semirotaxane can be reversibly controlled by adding KPF6 and 18C6 sequentially. This system affords a way to prepare novel supramolecular polymers. Dibenzo-30-crown-10 (DB30C10) derivatives and pyridine-based DB30C10 cryptands were prepared by employing the templating method established by our group. A [2]pseudorotaxane was prepared based on DB30C10 diol and paraquat diol. The [3]pseudorotaxane formed via the self-assembly between DB30C10 cryptand and bisparaquat diol occurred in a cooperative manner. In addition, a bromo-functionalized DB30C10 cryptand was successfully designed and prepared. An alkyne-functionalized DB30C10 cryptand was designed and is under preparation; its precursors have been prepared successfully. In the future, based on these functionalized cryptands and paraquat salts, AA and AB type monomers will be prepared. Via the self-assembly between these monomers, non-covalent supramolecular polymers with high molecular weight will be afforded. A novel DB30C10 cryptand bearing an organometallic bridge, ferrocene, was prepared via 1-(3'-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) coupling of the crown ether diol with ferrocene dicarboxylic acid. The cryptand is dimerized in the solid state via π, π-stacking and hydrogen bonds. The ferrocene-based cryptand formed novel [2]pseudorotaxanes with paraquat and diquat PF₆ salts with association constants (Kₐ) of 1.7 ± 0.1 x 10³ and 4.2 ± 0.3 x 10⁴ M⁻¹ in acetone-d₆, respectively. In order to prepare linear polycatenanes, the preparation of which represent a real synthetic challenge, a series phenanthroline derivatives were designed and prepared. A “U” shaped monomer was successfully prepared in relative high yield with good solubility. In the future, real linear polycatenanes will be prepared. In addition, a novel diphenanthroline-based BMP32C10 derivative was prepared in high yield and the complexation behavior between it and dimethyl paraquat was studied. / Ph. D.
355

Synthesis and Characterization of Linear and Crosslinked Sulfonated Poly(arylene ether sulfone)s: Hydrocarbon-based Copolymers as Ion Conductive Membranes for Electrochemical Systems

Daryaei, Amin 26 June 2017 (has links)
Sulfonated poly(arylene ether sulfone)s as ion conductive copolymers have numerous potential applications. Membranes cast from these copolymers are desirable due to their good chemical and thermal stability, excellent mechanical strength, satisfactory conductivity, and excellent transport properties of water and ions. These copolymers can be used in a variety of topologies. Structure-property-performance relationships of these membranes as candidates for electrolysis of water for hydrogen production and for purification of water from dissolved ions have been studied. Linear and multiblock sulfonated poly(arylene ether sulfone)s are potential alternative candidates to Nafion membranes for hydrogen gas production via electrolysis of water. In this investigation, these copolymers were prepared from the direct polymerization of di-sulfonated and non-sulfonated comonomers with bisphenol monomers. In systematic investigations, a series of copolymers with modified properties were synthesized and characterized by changing the ratio of the sulfonated/non-sulfonated comonomers in each reaction. These copolymers were investigated in terms of mechanical stability, proton conductivity and H2 gas permeability at a range of temperatures and under fully hydrated conditions. A multiblock copolymer was synthesized and evaluated for its potential as membranes for electrolysis of water and for fuel cell applications. The multiblock copolymer contained some fluorinated repeat units in the hydrophobic blocks, and these were coupled with a fully disulfonated hydrophilic block prepared from 3,3'-disulfonate-4,4'-dichlorodiphenyl sulfone and biphenol. After annealing, the multiblock copolymer showed enhanced proton conductivity and a more ordered morphology in comparison to the random copolymer counterparts. At 90 oC and under fully hydrated conditions, improved proton conductivity and controlled H2 gas permeability was observed. Finally, the performance of the multiblock copolymer, which was measured as the ratio of proton conductivity to H2 gas permeability, was improved when compared to the state-of-the-art membrane, Nafion 212, by a factor of 3. In another systematic study, two series of random copolymers were synthesized and characterized, and then cast into membranes to evaluate for electrolysis of water. One series contained solely hydroquinone as the phenolic monomer, while the second series contained a mixture of resorcinol and hydroquinone as phenolic comonomers. The polymers that contained only the hydroquinone monomer showed exceptionally good mechanical properties due to the para-substituted comonomer in the composition of the polymer. In the resorcinol-hydroquinone series, gas permeability was constrained due to the presence of 25% of the meta-substituted comonomer incorporated into its structure. Low gas permeability and high proton conductivity at elevated temperatures were obtained for both the linear random and multiblock copolymers. Performance of these copolymers was superior to Nafion at elevated temperatures (80-95°C). In order to enhance the durability of these materials in their hydrated states at elevated temperatures, the surfaces of these copolymer films were treated with fluorine gas. In comparison with pristine non-fluorinated membranes, the modified membranes showed decreased water uptake and longer durability in Fenton's reagent. A series of linear and crosslinked copolymers were investigated with respect to their potential for use as membranes for desalination of water by electrodialysis and reverse osmosis. The crosslinked membranes were prepared by reacting controlled molecular weight, disulfonated oligomers that were terminated with meta-aminophenol with an epoxy reagent. The oligomers had systematically varied degrees of disulfonation and either 5000 or 10,000 Da controlled molecular weights. Membrane casting conditions were established to fabricate highly crosslinked systems with greater than 90% gel fractions. At such a high gel fraction, the water uptake of the crosslinked membranes was lower than that of the linear biphenol-based, disulfonated random copolymer with a similar IEC. Among these series of copolymers, it was shown that the crosslinked membranes cast from the oligomers with 50% degree of disulfonation and a molecular weight of 10,000 Da had the lowest salt permeability of 10-8 cm2/sec. For desalination applications, a comonomer was synthesized with one sulfonate substituent on 4,4'-dichlorodiphenyl sulfone. This new monosulfonated comonomer allows for even distribution of the ions on the linear copolymer backbone, and this may be important for controlling ion transport. Mechanical tests were conducted on the membranes while they were submerged in a water bath. The ultimate strength of a fully hydrated copolymer with an IEC of 1.36 meq/g was approximately 60 MPa with an elongation at break of 160%. Moreover, in a monovalent/divalent mixed salt solution, the monosulfonated linear copolymer exhibited a constant Na+ passage of less than 1.0%. / Ph. D.
356

Crystallization Behavior, Tailored Microstructure, and Structure-Property Relationships of Poly(Ether Ketone Ketone) and Polyolefins

Pomatto, Michelle Elizabeth 08 April 2024 (has links)
This work investigates the influence of microstructure and cooling and heating rates on the physical and chemical properties of fast crystallizing polymers. The primary objectives were to 1) utilize advanced methodologies to accurately determine the fundamental thermodynamic value of equilibrium melting temperature (Tmo) for the semi-crystalline polymer poly(ether ketone ketone) (PEKK), 2) increase understanding of the influence of microstructure (random versus blocky) of functionalized semi-crystalline polymers on physical and chemical properties, and 3) understand the influence of additive manufacturing process parameters on semi-crystalline polymer crystallization and final properties. All objectives utilized the advanced characterization technique of fast scanning calorimetry (FSC) using the Mettler Toledo Flash DSC 1. The first half of this work focuses on the high-performance semi-crystalline aromatic polymer poly(ether ketone ketone) (PEKK) with a copolymerization ratio of terephthalate to isophthalate moieties (i.e., T/I ratio) of 80/20. Due to the fast heating and cooling rates of the Flash DSC, PEKK underwent melt-reorganization upon heating at slow heating rates. This discovery resulted in utilizing a Hoffman-Weeks linear extrapolation of the zero-entropy production temperature to establish a new equilibrium melting temperature of 382 oC. Additionally, a new NMR solvent, dichloroacetic acid, was discovered for PEKK, allowing for comprehensive NMR analysis of PEKK for the first time. Diphenyl acetone (DPA) was discovered as a novel, benign gelation solvent for PEKK, enabling heterogeneous gel-state bromination and sulfonation to afford blocky microstructures. The gel state functionalization process resulted in a blocky microstructure with runs of pristine crystallizable PEKK retained within the crystalline domains, and amorphous domains containing the functionalized PEKK monomers. The preservation of the pristine crystalline domains resulted in enhanced physical and chemical properties compared to the randomly functionalized analogs. Additionally, heterogeneous gel state functionalization of PEKK gels prepared from different solvents and gelation temperatures resulted in differences in crystallization behavior between blocky microstructures of the same degree of functionalization. This result demonstrates that the blocky microstructure can be tuned through controlling the starting gel morphology. The second half of this work focuses on understanding the influence of cooling and heating rates on the melting, crystal morphology, and crystallization kinetics on isotactic polypropylene (iPP), iPP-polyethylene copolymers (iPP-PE), and iPP/iPP-PE blends and using this information to gain understanding of how these polymers crystallize during the additive manufacturing processes of powder bed fusion (PBF) and material extrusion (MatEx). The crystallization kinetics of iPP, iPP-PE copolymers, and iPP/iPP-PE blends exhibited bimodal parabolic-like behavior attributed to crystallization of the mesomorphic crystal polymorph at low temperatures and the α-form crystal at high temperatures. Incorporation of non-crystallizable polyethylene fractions both covalently and blended as a secondary component, resulted in decreasing crystallization rates, inhibition of crystallization, and decreased crystallizability. Additionally, the non-isothermal crystallization behavior of these systems shows that the non-crystallizable fractions influence the crystal nucleation density and temperature at which polymorphic crystallization occurs. Utilizing in-situ IR thermography in the PBF system, the heating and cooling rates observed for a single-layer PBF print were used to mimic the PBF process by FSC. Partial melting in the printing process leads to self-seeding and increased crystallization onset temperatures upon cooling, which influences the final part melting morphology. Nucleation from surrounding powder and partially melted crystals greatly influences the crystallization kinetics and crystal morphology of the final part. Utilizing rheological experiments and process-relevant cooling rates observed in the MatEx process, the miscibility of iPP/iPP-PE blends influenced the nucleation behavior and crystallization rates, subsequently leading to differences in printed part properties. / Doctor of Philosophy / The crystalline morphology of semi-crystalline polymers depends on their microstructure and thermal history. The resultant crystalline morphology greatly affects the physical and chemical properties. In the first part of this work, the effect of microstructure on material properties is explored. Block copolymer microstructures consist of two or more blocks of distinct polymer segments covalently bonded to one another. This leads to self-organization of the components into unique structural order that would not be attainable if the polymer segments were randomly bonded together. This structural order enhances material properties; thus, block copolymers are advantageous for many applications. However, synthesis of block copolymers can be tedious and expensive. Thus, additional methodologies for block copolymer synthesis are desired. In this work blocky (i.e., statistically non-random) copolymers are synthesized through a facile post-polymerization functionalization method. These blocky copolymers result in enhanced physical and chemical properties compared to the randomly synthesized analogs. This work shows blocky functionalization of a new polymer under new post-polymerization conditions and expands upon the synthesis methodology for block copolymers. In the second part of this work, the effect of heating and cooling rates on the formation of crystals during additive manufacturing is explored. Additive manufacturing modalities of powder bed fusion and material extrusion consist of rapid heating and cooling processes, which can affect how crystals form and ultimately affect the final printed part properties. Using a technique called fast scanning calorimetry, the different heating and cooling rates that the polymer witnesses during printing can be mimicked, and the formation of crystals under these different conditions can be replicated. This mimicking analysis can be related to the printing process and be used to help guide printing processes to enhance printed part properties.
357

Quantitative analysis of surfactant deposits on human skin by liquid chromatography electrospray ionisation tandem mass spectrometry.

Massey, Karen A., Snelling, Anna M., Nicolaou, Anna January 2010 (has links)
No / Surfactants are commonly used as cleansing agents and yet there are concerns they may also have a role in skin irritation. Presently, the lack of suitable methods for quantitative and qualitative analysis of surfactant deposition on skin has hindered the in-depth investigation of such effects. Here, we report the application of reverse phase liquid chromatography electrospray ionisation mass spectrometry (LC/ESI-MS/MS) assays for two surfactants commonly used in consumer products, namely sodium lauryl ether sulphate (SLES) and laurylamidopropyl betaine (LAPB), to a baseline study aiming to assess deposition levels on human skin. The linearity of the assays was established at 3-20 ng, with coefficient of variation below 5%. Detection limits were 100 pg for LAPB and 1 ng for SLES; quantitation limits were 500 pg for LAPB and 2.5 ng for SLES. The baseline study was conducted using a panel of 40 healthy volunteers. Skin extract samples were taken in triplicate from forearms, using ethanol. SLES was detected on most volunteers, with 75% of them having SLES deposits in the range of 100-600 ng/cm2. LAPB was detected on the skin of all volunteers with 85% of them having deposit levels within the concentration range of 1-100 ng/cm2. These results demonstrate the extent to which commonly used surfactants remain on the skin during the day. The analytical methods reported here can be applied to the investigation of surfactants in relation to general skin condition and the development and optimisation of new consumer wash products. / EPSRC
358

Quantitative analysis of surfactant deposits on human skin by liquid chromatography/electrospray ionisation tandem mass spectrometry.

Massey, Karen A., Snelling, Anna M., Nicolaou, Anna January 2010 (has links)
No / Surfactants are commonly used as cleansing agents and yet there are concerns that they may also have a role in skin irritation. The lack of suitable methods for the quantitative and qualitative analysis of surfactant deposition on skin has hindered the in-depth investigation of such effects. Here, we report the application of reversed-phase liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) assays for two surfactants commonly used in consumer products, namely sodium lauryl ether sulfate (SLES) and laurylamidopropyl betaine (LAPB), to a baseline study aiming to assess deposition levels on human skin. The linearity of the assays was established at 3-20 ng, with coefficient of variation below 5%. The detection limits were 100 pg for LAPB and 1 ng for SLES; quantitation limits were 500 pg for LAPB and 2.5 ng for SLES. The baseline study was conducted using a panel of 40 healthy volunteers. Skin extract samples were taken in triplicate from forearms, using ethanol. SLES was detected on most volunteers, with 75% of them having SLES deposits in the range of 100-600 ng/cm(2). LAPB was detected on the skin of all volunteers with 85% of them having deposit levels within the concentration range of 1-100 ng/cm(2). These results demonstrate the extent to which commonly used surfactants remain on the skin during the day. The analytical methods reported here can be applied to the investigation of surfactants in relation to general skin condition and to the development and optimisation of new consumer wash products. / EPSRC-DTA award / School Life Sciences
359

Atomistic and molecular simulations of novel acid-base blend membranes for direct methanol fuel cells

Mahajan, Chetan Vasant 04 February 2014 (has links)
One of the main challenges to transform highly useful Direct Methanol Fuel Cells (DMFC) into a commercially viable technology has been to develop a low cost polymer electrolyte membrane (PEM) with high proton conductivity, high stability and low methanol crossover under operating conditions desirably including high temperatures. Nafion, the widely used PEM, fails to meet all of these criteria simultaneously. Recently developed acid-base polymer blend membranes constitute a promising class of PEMs alternative to Nafion on above criteria. Even though some of these membranes produce better performance than Nafion, they still present numerous opportunities for maximizing high temperature proton conductivity and dimensional stability with concomitant minimization of methanol crossover. Our contribution embarks on the fundamental study of one such novel class of blend membranes viz., sulfonated poly (ether ether ketone) (SPEEK)(95 % by weight) blended with polysulfone tethered with base (5 % by weight) such as 2-aminobenzimidazole (ABIm), 5-amino-benzotriazole (BTraz) and 1H-perimidine (PImd), developed by Manthiram group at The University of Texas at Austin. In this work, we report extensive all-atom classical as well as ab-initio molecular dynamics (MD) simulations of such water-methanol solvated blend membranes (as well as pure SPEEK and Nafion) the first time. Our approach consists of three steps: (1) Predict dynamical properties such as diffusivities of water, methanol and proton in such membranes (2) Validate against experiments (3) Develop understanding on the interplay between basic chemistry, structure and properties, the knowledge that can potentially be used to develop better candidate membranes. In particular, we elucidate the impact of simple, fundamental physiochemical features of the polymeric membranes such as hydrophilicity, hydrophobicity, structure or the size of the base on the structural manifestations on the bigger scale such as nanophase segregation, hydrogen bonding or pore sizes, which ultimately affect the permeant transport through such systems. / text
360

Etude de la diversité bactérienne et génétique dans des cultures dégradant l'ETBE ou le MTBE

Le Digabel, Yoann 04 October 2013 (has links)
L’éthyl tert-butyl éther (ETBE) et le méthyl tert-butyl éther (MTBE) sont des éthers carburants utilisés comme additifs dans les essences sans plomb. Du fait de leur utilisation massive, de nombreux cas de pollutions d’aquifères ont été répertoriés, en particulier pour le MTBE, et ces composés représentent donc un risque sanitaire potentiel. Des travaux récents ont permis de mettre en évidence différents micro-organismes capables de dégrader ces composés malgré leur faible biodégradabilité dans l'environnement. Néanmoins, une meilleure compréhension de l'écologie et de la régulation de ces capacités de dégradation permettrait une meilleure gestion de la bioremédiation de sites contaminés par l'ETBE ou le MTBE.L’objectif de la thèse, réalisée dans le cadre d'un projet ANR Blanc (MiOxyFun), est de mieux comprendre l'écologie des communautés microbiennes impliquées dans la dégradation de ces éthers et leur relation avec la régulation ainsi qu'avec les cinétiques de dégradation de ces composés par des membres spécifiques de ces communautés. Ainsi, à partir de différents échantillons environnementaux venant de sites pollués par l'ETBE ou le MTBE, des enrichissements ont pu être réalisés en laboratoire afin d'étudier leurs microflores. Ces enrichissements ont été étudiés notamment pour leurs cinétiques de dégradation, la composition de leurs communautés bactériennes, et pour l'isolement de souches bactériennes directement impliquées dans la dégradation de ces composés. L'étude des cinétiques de dégradation de l'ETBE ou du MTBE par différents enrichissements obtenus sur ETBE (cinq) et sur MTBE (six) a permis de montrer des profils de dégradation très différents. La dégradation était généralement lente et s'accompagnait d'un faible rendement en biomasse avec parfois accumulation transitoire de tert-butanol (TBA). Les capacités de dégradation d'autres composés des essences (BTEXs et n-alcanes) étaient aussi différentes d'un enrichissement à l'autre, le benzène, entre autres, étant dégradé par 10/11 enrichissements. Des techniques d'empreinte moléculaire (RISA, DGGE) ont permis de constater que les communautés bactériennes présentes dans les cinq enrichissements sur ETBE étaient différentes de celles sur les enrichissements sur MTBE. Les enrichissements sur ETBE ont fait spécifiquement l'objet d'une étude par analyse de banques de clones réalisées à partir des gènes codant l'ARNr 16S de ces enrichissements. Cette étude a montré la prédominance des Proteobacteria dans trois enrichissements, la prédominance des Acidobacteria dans un autre ainsi qu'une composition plus héterogène dans le cinquième. De plus, des Actinobacteria ont été détectées dans les 5 enrichissements.En parallèle, plusieurs souches possédant des capacités de dégradation ont été isolées des enrichissements: Rhodococcus sp. IFP 2040, IFP 2041, IFP 2042, IFP 2043 (dégradant l'ETBE jusqu'au TBA), une Betaproteobacteria IFP 2047 (dégradant l'ETBE), Bradyrhizobium sp. IFP 2049 (dégradant le TBA), Pseudonocardia sp. IFP 2050 (dégradant l'ETBE et le MTBE), Pseudoxanthomonas sp. IFP 2051 et une Proteobacteria IFP 2052 (dégradant le MTBE). Une étude par qPCR sur les gènes codant l'ARNr 16S a montré la prédominance de certaines souches isolées dans les enrichissements ETBE. Enfin, plusieurs gènes connus comme étant impliqués dans la dégradation des éthers carburants ont pu être mis en évidence dans les enrichissements et dans certaines des souches isolées. / ETBE and MTBE are fuel oxygenates added to unleaded gasoline to improve combustion. Due to their extensive use, numerous aquifers have been contaminated, particularly by MTBE. The use of ETBE and MTBE is considered to represent an environmental risk. Recent research has uncovered a range of microorganisms capable of degrading these compounds, even though their environmental half-lives are long. Improved understanding of the ecology and regulation of this degradative ability could improve the management of the ETBE and MTBE contaminated site remediation. The aim of this work, taking place in the framework of the ANR project MiOxyFun was to investigate the ecology of ETBE- and MTBE-degrading microbial communities and their relationship to the regulation and kinetics of ETBE- and MTBE-degradation by specific members of these communities. Several ETBE- and MTBE-degrading microbial communities were enriched in the laboratory from environmental samples from contaminated sites throughout the world. These enrichments were examined for their degradation kinetics, microbial community structure, and used to isolate specific community members actively degrading ETBE and/or MTBE. The ETBE or MTBE biodegradation kinetics of the five ETBE- and six MTBE- degrading enrichments demonstrated a diversity of biodegradation rates. Overall, biodegradation was generally slow and associated to a low biomass yield. Tert-butanol (TBA) was transiently produced in several cases. Biodegradation of other gasoline compounds (BTEXs and n-alkanes) was tested and varied among the enrichments studied. Benzene, however, was degraded in 10 out of the 11 enrichments. DNA fingerprinting techniques (RISA, DGGE) showed that the microflora present in the five ETBE enrichments were different from those of the MTBE enrichments. The ETBE enrichments were studied further by sequencing the 16S rRNA genes extracted, amplified and cloned from these enrichments. Proteobacteria dominated three of the ETBE enrichments, Acidobacteria in another one, and a more heterogeneous composition was found in the fifth ETBE enrichment. Actinobacteria were detected in all five enrichments. Several strains with ETBE or MTBE degradation capacities were isolated: Rhodococcus sp. IFP 2040, IFP 2041, IFP 2042, IFP 2043 (degrading ETBE to TBA),a Betaproteobacteria IFP 2047 (degrading ETBE), Bradyrhizobium sp. IFP 2047 (degrading TBA), Pseudonocardia sp. IFP 2050 (degrading ETBE and MTBE), Pseudoxanthomonas sp. IFP 2051 and a Proteobacteria IFP 2052 (degrading MTBE). Quantification of the 16S rRNA gene confirmed the relatively high number of these isolates in some of the ETBE enrichments. Several genes involved in ETBE and/or MTBE biodegradation were detected in some of the enrichments and in some of the isolated strains.

Page generated in 0.0698 seconds