• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 784
  • 308
  • 189
  • 68
  • 61
  • 43
  • 28
  • 22
  • 17
  • 16
  • 12
  • 8
  • 6
  • 3
  • 3
  • Tagged with
  • 1669
  • 531
  • 401
  • 316
  • 307
  • 278
  • 228
  • 227
  • 200
  • 174
  • 153
  • 153
  • 127
  • 119
  • 117
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
621

PLAGL2 Cooperates in Leukemia Development by Upregulating MPL Expression: A Dissertation

Landrette, Sean F. 22 June 2006 (has links)
Chromosomal alterations involving the RUNXI or CBFB genes are specifically and recurrently associated with human acute myeloid leukemia (AML). One such chromosomal alteration, a pericentric inversion of chromosome 16, is present in the majority of cases of the AML subtype M4Eo. This inversion joins CBFB with the smooth muscle myosin gene MYH11 creating the fusion CBFB-MYH11. Knock-in studies in the mouse have demonstrated that expression of the protein product of the Cbfb-MYH11fusion, Cbfβ-SMMHC, predisposes mice to AML and that chemical mutagenesis both accelerates and increases the penetrance of the disease (Castilla et al., 1999). However, the mechanism of transformation and the associated collaborating genetic events remain to be resolved. As detailed in Chapter 2, we used retroviral insertional mutagenesis (RIM) to identify mutations in Cbfb-MYH11 chimeric mice that contribute to AML. The genetic screen identified 54 independent candidate cooperating genes including 6 common insertion sites: Plag1, Plagl2, Runx2, H2T23, Pstpip2, and Dok1. Focusing on the 2 members of the Plag family of transcription factors, Chapter 3 presents experiments demonstrating that Plag1 and Plagl2 independently cooperate with Cbfβ-SMMHC in vivo to efficiently trigger leukemia with short latency in the mouse. In addition, Plag1 and PLAGL2 increased proliferation and in vitro cell renewal in Cbfβ-SMMHC hematopoietic progenitors. Furthemore, PLAG1 and PLAGL2 expression was increased in 20% of human AML samples suggesting that PLAG1 and PLAGL2 may also contribute to human AML. Interestingly, PLAGL2was preferentially increased in samples with chromosome 16 inversion, t(8;21), and t(15;17). To define the mechanism by which PLAGL2 contributes to leukemogenesis, Chapter 4 presents studies assessing the role of the Mp1 signaling cascade as a Plagl2 downstream pathway in leukemia development. Using microarray analysis we discovered that PLAGL2 induces the expression of Mp1 transcript in primary bone marrow cells that express Cbfβ-SMMHC and that this induction is maintained in leukemogenesis. We have also performed luciferase assays to confirm that the Mp1 proximal promoter can be directly bound and activated by PLAGL2. Furthermore, we demonstrate increased Mp1 expression leads to hypersensitivity to the Mp1 ligand thrombopoietin (TPO) in PLAGL2/Cbfβ-SMMHC leukemic cells. To test the functional relevance in leukemia formation, we performed a bone-marrow transplantation assay and demonstrate that overexpression of Mp1 is indeed sufficient to cooperate with Cbfβ-SMMHC in leukemia induction. This data reveals that PLAGL2 cooperates with Cbfβ-SMMHC at least in part by inducing the expression of the cytokine receptor Mp1. Thus, we have identified the Mp1 signal transduction pathway as a novel target for therapeutic intervention in AML.
622

Targeting Drug Resistance in Chronic Myeloid Leukemia: A Dissertation

Ma, Leyuan 08 November 2016 (has links)
Inhibiting BCR-ABL kinase activity with tyrosine kinase inhibitors (TKIs) has been the frontline therapy for CML. Resistance to TKIs frequently occurs, but the mechanisms remain elusive. First, to uncover survival pathways involved in TKI resistance in CML, I conducted a genome-wide RNAi screen in human CML cells to identify genes governing cellular sensitivity to the first generation TKI called IM (Gleevec). I identified genes converging on and activating the MEK/ERK pathway through transcriptional up-regulation of PRKCH. Combining IM with a MEK inhibitor synergistically kills TKI-resistant CML cells and CML stem cells. Next, I performed single cell RNA-seq to compare expression profiles of CML stem cells and hematopoietic stem cells isolated from the same patient. Among the genes that are preferentially expressed in CML stem cells is PIM2, which encodes a pro-survival serine-threonine kinase that phosphorylates and inhibits the pro-apoptotic protein BAD. Inhibiting PIM2 function sensitizes CML stem cells to IM-induced apoptosis and prevents disease relapse in a CML mouse model. Last, I devised a CRISPR-Cas9 based strategy to perform insertional mutagenesis at a defined genomic location in murine hematopoietic Ba/F3 cells. As proof of principle, we showed its capability to perform unbiased, saturated point mutagenesis in a 9 amino acid region of BCR-ABL encompassing the socalled “gatekeeper” residue, an important determinant of TKI binding. We found that the ranking order of mutations from the screen correlated well with their prevalence in IM-resistant CML patients. Overall, my findings reveal novel resistance mechanisms in CML and provide alternative therapeutic strategies.
623

Papel do gene da síndrome de Wiskott Aldrich (WASP) na leucemia mielóide crônica. / The role of Wiskott Aldrich syndrome protein (WASP) in the chronic myeloid leukemia.

Pereira, Welbert de Oliveira 04 November 2011 (has links)
Bcr-Abl é a tirosina quinase (TK) responsável por causar a Leucemia Mielóide Crônica (LMC). Os últimos estudos de follow-up mostram que apenas 50% dos pacientes tratados com a segunda geração de inibidores de TK atinge a remissão completa, o que significa que metade desses pacientes necessita de um algo melhor do que está disponível. Wiskott Aldrich Syndrome Protein (WASP) é um gene essencial para o bom desenvolvimento e função das células hematopoiéticas. Ante esse contexto, decidimos investigar se WASP poderia ter algum papel ou relevância na LMC. Em conclusão, Bcr-Abl suprime a expressão WASP por um mecanismo epigenético. A re-expressão de WASP torna as células mais suscetíveis à apoptose em resposta ao Imatinib. Sugerimos que a recuperação da expressão WASP deve ser discutida como estratégia para a terapia da LMC. / Bcr-Abl is the tyrosine kinase (TK) responsible for causing Chronic Myeloid Leukemia (CML). This fusion protein up- and down-regulates several genes and pathways, producing a strong resistance to apoptosis and a blockage of cell maturation in the hematopoietic compartment. The last follow-up studies provided that only 50% of the patients treated with second generation achieve complete remission, what means that one-half of these patients needs something better. Wiskott Aldrich Syndrome Protein (WASP) is an essential gene for the proper development and function of the hematopoietic cells. In the light of this background, we decided to investigate if WASP could have some role or relevance in the CML context. In conclusion, Bcr-Abl suppresses WASP expression by an epigenetic mechanism. The re-expression of WASP makes the CML cells more susceptible to apoptosis and contribute to respond to Imatinib. We suggest that recovery of WASP expression should be discussed as a new and additional strategy for CML therapy.
624

Anti-leukemic activities of glycyrrhizin and 18b-glycyrrhetinic acid.

January 2001 (has links)
Tsang Yuen-Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 200-218). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.i / ABBREVIATIONS --- p.iii / ABSTRACT --- p.vii / CHINESE ABSTRACT --- p.xi / TABLE OF CONTENTS --- p.xiii / Chapter CHAPTER 1: --- GENERAL INTRODUCTION / Chapter 1.1 --- Hematopoiesis --- p.1 / Chapter 1.1.1 --- An Overview on Hematopoiesis --- p.1 / Chapter 1.1.2 --- Role of Cytokines in the Control of Hematopoiesis --- p.4 / Chapter 1.2 --- Leukemia --- p.5 / Chapter 1.2.1 --- Abnormalities in Hematopoietic Cell Development --- p.5 / Chapter 1.2.2 --- Classification of Leukemia --- p.7 / Chapter 1.2.3 --- Etiology and Symptoms of Leukemia --- p.9 / Chapter 1.2.4 --- Therapeutic Strategies for Leukemia --- p.10 / Chapter 1.2.4.1 --- Conventional Therapies --- p.10 / Chapter 1.2.4.2 --- Differentiation Therapy and Induction of Apoptosis in Leukemia --- p.11 / Chapter 1.2.5 --- Regulation of Apoptosis and Cell Cycle Progression --- p.12 / Chapter 1.2.5.1 --- Apoptosis --- p.12 / Chapter 1.2.5.2 --- Cell Cycle --- p.13 / Chapter 1.2.5.3 --- Disregulation of Apoptosis and Cell Cycle Contribute to the Development of Leukemia --- p.14 / Chapter 1.3 --- Licorice --- p.16 / Chapter 1.3.1 --- Chemistry of Licorice --- p.16 / Chapter 1.3.2 --- Pharmacological Activities of Glycyrrhizin and 18-β Glycyrrhetinic Acid --- p.22 / Chapter 1.3.2.1 --- Mineralocorticoid Activity --- p.22 / Chapter 1.3.2.2 --- Anti-inflammatory Effect --- p.23 / Chapter 1.3.2.3 --- Anti-allergic Effect --- p.24 / Chapter 1.3.2.4 --- Enhancement of Immune Response --- p.24 / Chapter 1.3.2.5 --- Anti-hepatotoxic Effects --- p.26 / Chapter 1.3.2.6 --- Anti-viral Activity --- p.27 / Chapter 1.3.2.7 --- Anti-carcinogenic and Anti-tumor Effects --- p.28 / Chapter 1.3.3 --- Other Biological Activities of Licorice --- p.30 / Chapter 1.3.4 --- A 96-kDa Glycyrrhizin-Binding Protein (gb96) --- p.31 / Chapter 1.3.5 --- Evaluation of Health Hazard --- p.32 / Chapter 1.4 --- Aims and Scopes of This Research --- p.34 / Chapter CHAPTER 2: --- MATERIALS AND METHODS / Chapter 2.1 --- Materials --- p.37 / Chapter 2.1.1 --- Animals --- p.37 / Chapter 2.1.2 --- Cell Lines --- p.37 / Chapter 2.1.3 --- "Cell Culture Medium, Buffers and Reagents" --- p.39 / Chapter 2.1.4 --- Recombinant Cytokines --- p.42 / Chapter 2.1.5 --- [methyl-3H] Thymidine (3H-TdR) --- p.43 / Chapter 2.1.6 --- Liquid Scintillation Cocktail --- p.44 / Chapter 2.1.7 --- Reagents and Buffers for Flow Cytometry --- p.44 / Chapter 2.1.8 --- Monoclonal Antibodies --- p.45 / Chapter 2.1.9 --- Reagents for DNA Extraction --- p.47 / Chapter 2.1.10 --- Reagents for Total RNA Isolation --- p.48 / Chapter 2.1.11 --- Reagents and Buffers for RT-PCR Study --- p.49 / Chapter 2.1.12 --- Reagents and Buffers for Gel Electrophoresis --- p.55 / Chapter 2.1.13 --- Reagents and Buffers for Western Blot Analysis --- p.56 / Chapter 2.2 --- Methods --- p.63 / Chapter 2.2.1 --- Culture of the Tumor Cell Lines --- p.63 / Chapter 2.2.2 --- "Isolation, Preparation and Culture of Primary Mouse Cells" --- p.63 / Chapter 2.2.3 --- Determination of Cell Proliferation by [3H]-TdR Incorporation Assay --- p.64 / Chapter 2.2.4 --- Determination of Cell Viability --- p.65 / Chapter 2.2.5 --- Cell Morphology Study --- p.66 / Chapter 2.2.6 --- Apoptosis Study by DNA Fragmentation --- p.66 / Chapter 2.2.7 --- Flow Cytometric Analysis --- p.67 / Chapter 2.2.8 --- Cell Cycle/DNA Content Evaluation --- p.68 / Chapter 2.2.9 --- Gene Expression Study --- p.69 / Chapter 2.2.10 --- Protein Expression Study --- p.72 / Chapter 2.2.11 --- Statistical Analysis --- p.75 / Chapter CHAPTER 3: --- THE ANTI-TUMOR EFFECTS OF GLYCYRRHIZIN AND 18-β GLYCYRRHETINIC ACID ON VARIOUS LEUKEMIC CELL LINES / Chapter 3.1 --- Introduction --- p.76 / Chapter 3.2 --- Results --- p.78 / Chapter 3.2.1 --- The Growth Inhibitory Effects of Glycyrrhizin on Various Leukemic Cell Lines --- p.78 / Chapter 3.2.1.1 --- Differential Anti-proliferative Effects of Glycyrrhizin on Various Leukemic Cell Lines In Vitro --- p.78 / Chapter 3.2.1.2 --- Effects of Glycyrrhizin on the Viability of Various Leukemic Cell Lines and Normal Hematopoietic Cells In Vitro --- p.89 / Chapter 3.2.1.3 --- Induction of DNA Fragmentation in Leukemia Cells by Glycyrrhizin --- p.94 / Chapter 3.2.1.4 --- Effect of Glycyrrhizin on the Cell Cycle Kinetics of HL-60 Cells In Vitro --- p.97 / Chapter 3.2.1.5 --- Effect of Glycyrrhizin on the Cell Cycle Kinetics of JCS Cells In Vitro --- p.100 / Chapter 3.2.1.6 --- Effect of Glycyrrhizin on the In Vivo Tumorigenicity of the Murine Myeloid Leukemia JCS Cells --- p.103 / Chapter 3.2.2 --- The Growth Inhibitory Effects of 18-β Glycyrrhetinic Acid on Various Leukemic Cells Lines --- p.105 / Chapter 3.2.2.1 --- Differential Anti-proliferative Effect of 18-β Glycyrrhetinic Acid on Various Leukemic Cell Lines In Vitro --- p.105 / Chapter 3.2.2.2 --- Effects of 18-β Glycyrrhetinic Acid on the Viability of Various Leukemic Cell Lines and Normal Hematopoietic Cells In Vitro --- p.115 / Chapter 3.2.2.3 --- Induction of DNA Fragmentation in Leukemia Cells by 18-β Glycyrrhetinic Acid --- p.120 / Chapter 3.2.2.4 --- Effect of 18-β Glycyrrhetinic Acid on the Cell Cycle Kinetics of HL-60 Cells In Vitro --- p.123 / Chapter 3.2.2.5 --- Effect of 18-β Glycyrrhetinic Acid on the Cell Cycle Kinetics of JCS Cells In Vitro --- p.126 / Chapter 3.2.2.6 --- Effect of 18-β Glycyrrhetinic acid on the In Vivo Tumorigenicity of the Murine Myeloid Leukemia JCS Cells --- p.129 / Chapter 3.3 --- Discussion --- p.131 / Chapter CHAPTER 4: --- THE DIFFERENTIATION-INDUCING EFFECTS OF GLYCYRRHIZIN AND 18-β GLYCYRRHETINIC ACID ON MURINE MYELOID LEUKEMIA CELLS / Chapter 4.1 --- Introduction --- p.135 / Chapter 4.2 --- Results --- p.138 / Chapter 4.2.1 --- Morphological Changes in Glycyrrhizin or 18-β Glycyrrhetinic Acid-treated JCS Cells --- p.138 / Chapter 4.2.2 --- Surface Antigen Immunophenotyping of Glycyrrhizin or 18-β Glycyrrhetinic Acid-treated JCS Cells --- p.141 / Chapter 4.2.3 --- Endocytic Activity of Glycyrrhizin or 18-β Glycyrrhetinic Acid-treated JCS Cells --- p.155 / Chapter 4.3 --- Discussion --- p.158 / Chapter CHAPTER 5: --- MECHANISTIC STUDIES ON THE ANTI LEUKEMIC ACTIVITIES OF GLYCYRRHIZIN AND 18-P GLYCYRRHETINIC ACID / Chapter 5.1 --- Introduction --- p.161 / Chapter 5.2 --- Results --- p.164 / Chapter 5.2.1 --- Combining Effect of Glycyrrhizin or 18-β Glycyrrhetinic Acid with Hematopoietic Cytokines in Modulating the Proliferation of the Murine Myeloid Leukemia JCS Cells --- p.164 / Chapter 5.2.1.1 --- Combining Effect of Glycyrrhizin and IL-lα on the Proliferation of JCS Cells --- p.164 / Chapter 5.2.1.2 --- Combining Effects of Glycyrrhizin with IFN-γ or TNF-α on the Proliferation of JCS Cells --- p.166 / Chapter 5.2.1.3 --- Combining Effect of 18-β Glycyrrhetinic Acid and IL-lα on the Proliferation of JCS Cells --- p.169 / Chapter 5.2.1.4 --- Combining Effects of 18-β Glycyrrhetinic Acid with IFN-γ or TNF-α on the Proliferation of JCS Cells --- p.169 / Chapter 5.2.2 --- Elucidation of the Molecular Mechanisms of Glycyrrhizin or 18-β Glycyrrhetinic Acid on Leukemic Cell Differentiation and Growth Arrest --- p.173 / Chapter 5.2.2.1 --- Modulatory Effects of Glycyrrhizin and 18-β Glycyrrhetinic Acid on the Expression of Cytokine Genes in the Leukemia JCS Cells --- p.173 / Chapter 5.2.2.2 --- Modulatory Effects of Glycyrrhizin and 18-β Glycyrrhetinic Acid on the Expression of PKC Isoforms in the Leukemia JCS Cells --- p.176 / Chapter 5.2.2.3 --- Modulatory Effects of Glycyrrhizin and 18-β Glycyrrhetinic Acid on the Expression of Growth- regulatory Genes in the Leukemia JCS Cells --- p.180 / Chapter 5.2.2.4 --- Modulatory Effects of 18-β Glycyrrhetinic Acid on the Expression of Apoptosis-related Genes in the Leukemia JCS Cells --- p.183 / Chapter 5.2.2.5 --- Modulatory Effects of 18-β Glycyrrhetinic Acid on the Expression of Growth-regulatory and Apoptosis-related Proteins in JCS Cells --- p.185 / Chapter 5.3 --- Discussion --- p.187 / Chapter CHAPTER 6: --- CONCLUSIONS AND FUTURE PERSPECTIVES --- p.194 / REFERENCES --- p.200
625

Transplante alogênico de medula óssea x terapia de consolidação com quimioterapia em pacientes portadores de leucemia mielóide aguda de risco intermediário em 1ª remissão completa

Furlanetto, Marina de Almeida January 2015 (has links)
Introdução: O Transplante Alogênico de Célula Tronco Hematopoiética (TCTH alogênico) é um procedimento de alto potencial curativo para a Leucemia Mielóide Aguda (LMA), principalmente pelo efeito “graft versus leukemia” (GVL), que leva a redução do risco de recaída. Atualmente, os pacientes com LMA de risco intermediário são submetidos ao procedimento caso possuam doador aparentado. Pacientes sem doador aparentado disponível são submetidos a tratamento de consolidação com quimioterapia, com maior chance de recaída da doença. Acredita-se que os pacientes submetidos ao TCTH tenham maiores sobrevida global e livre de doença, a despeito das altas taxas de morbimortalidade. A classificação de risco é extremamente importante para escolha terapêutica pós remissão. Assim, a realização da pesquisa de marcadores moleculares, para refinar a estratificação prognóstica, tem importância especial no grupo de risco intermediário, complementando a avaliação citogenética, e auxiliando na decisão terapêutica, sendo cada vez mais necessária, apesar de não disponível em todos os centros. Material e métodos: Foram avaliados os pacientes com LMA de risco intermediário em primeira Remissão Completa (1RC) do Serviço de Hematologia e TCTH do Hospital de Clínicas de Porto Alegre do período de 01 de abril de 1999 a 01 de outubro de 2014, com pelo menos 1 ano de seguimento após o tratamento, através de revisão de prontuários. Os dados foram dispostos no programa Excel e posteriormente exportados para o programa SPSS v. 18.0 para análise estatística. Resultados: Foram avaliados 69 pacientes, sendo 45 pacientes submetidos a consolidação com quimioterapia (“QT”) e 24 submetidos a TCTH Alogênico (“TCTH Alogênico”). A média de idade do grupo “QT” foi de 47,8 anos e do grupo “TCTH Alogênico” foi de 35,5 anos, com diferença estatisticamente significativa (P<0,001). Não houve diferença na distribuição entre o sexo. A mediana de tempo de seguimento do grupo “QT” foi de 1,1 anos (intervalo interquartil de 0,4 a 2,5 ) e no grupo “TCTH Alogênico” foi de 2,7 anos (intervalo interquartil de 0,4 a 5,5), sem diferença estatisticamente significativa na distribuição dos tempos de seguimento entre os grupos (P=0,236). A sobrevida do grupo “QT” em 12 meses foi de 52,3% e no grupo “TCTH Alogênico” foi de 62,5%. Aos 24 meses, a sobrevida do grupo “QT” foi de 31,7% e no grupo “TCTH Alogênico” foi de 58,3% e em 5 anos de 21,1% e 53,8%, respectivamente. O teste do Long-Rank aponta uma diferença estatisticamente significativa nas sobrevidas entre os grupos após 5 anos, com Hazard Ratio (HR) para óbito de 2,2 (IC 95%: 1,1-4,2), P=0,027, porém ao ajustarmos a relação pela idade esta associação perde significância estatística (HR:1,6 IC95%:1 - 1,1; P=0,246) Discussão: Os dados evidenciaram melhor sobrevida no grupo submetido à TCTH alogênico, porém o grupo submetido ao procedimento apresentava média de idade menor. No entanto, apesar da perda da significância estatística, o HR corrigido para idade permanece maior para o grupo sem TCTH, o que pode dever-se ao “n” pequeno da amostra. Identificar quais pacientes terão benefício com TCTH torna-se cada vez mais um desafio. O uso de marcadores moleculares são importantes no refinamento da estratificação de risco do grupo de risco intermediário, podendo auxiliar nessa decisão. Além disso, com o advento da possibilidade de condicionamentos não mieloablativos como alternativa aos pacientes mais velhos e com escore de comorbidades pior e a melhor terapia de suporte, talvez possamos ser menos conservadores na indicação desse procedimento, identificando assim aqueles que poderão obter melhores resultados no tratamento de uma doença tão agressiva e grave. / Background: Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is a high potentially curative procedure to Acute Myeloid Leukemia (AML), mainly by the “graft-versus-leukemia” (GVL) effect, which leads to reduced risk of relapse. Nowadays, intermediate risk AML patients are submitted to this procedure if a matched sibling donor is available. Patients without a sibling donor are submitted to consolidation with chemotherapy, with a greater chance of relapse. It is believed that patients submitted to allo-HSCT have a greater overall survival and disease-free survival, even though it presents high morbidity and mortality rates. Risk stratification is extremely important to post-remission treatment choice. Molecular markers research is especially important in intermediate risk group, complementing cytogenetic evaluation to a better prognostic stratification and, although it is still not available in all health centers, it is more and more necessary. Materials and Methods: We evaluated intermediate risk AML patients in first Complete Remission (CR1) at the Hematology Service and Bone Marrow Transplantation from Hospital de Clínicas de Porto Alegre from April 1st 1999 to October 1st 2014, and which had, at least, a one year follow-up after treatment, by conducting a medical record review. Data was inserted in Microsoft Excel 2010 spreadsheets and after exported to SPSS v. 18.0 to statistical analysis. Results: Among the 69 patients analyzed, 45 were submitted to consolidation with chemotherapy (Intermediate risk AML – non allo-HSCT) and 24 of then submitted to allo-HSCT (Intermediate risk AML – allo-HSCT). The average age of Intermediate risk AML – non allo-HSCT was 47.8 years old and Intermediate risk AML – allo-HSCT was 35.5 years old, with statistically significance difference (P<0,001). There was no difference regard sex of patients. The median follow-up in the Intermediate risk AML – non allo-HSCT was 1.1 years (interquartile rage of 0.4 to 2.5) and in the Intermediate risk AML – allo-HSCT was 2.7 years (interquartile rage of 0.4 to 5.5), with no statistically significance difference in follow-up time distribution between groups (P=0.236). Intermediate risk AML – non allo-HSCT survival in 12 months was 52.3% and in the Intermediate risk AML – allo-HSCT was 62.5%. In 24 months, Intermediate risk AML – non allo-HSCT survival was 31.7% and in Intermediate risk AML – allo HSCT survival was 58.3% and in 5 years it was 21.1% and 53.8% respectively. Long- Rank test indicates a statistically significant difference in survival between groups after 5 years, with hazard ratio (HR) for death of 2.2 (IC95% 1.1 – 4.2), P=0.027, but when we adjust the relation to age, this association loses statistical significance (HR:1.6 95%CI: 1 – 1.1; P=0.246). Discussion: Data showed a better survival rate to the group submitted to allo-HSCT, but the group presented a lower average age. However, despite de loss of statistical significance, Hazard Ratio (HR), adjusted to age remains higher to the non allo-HSCT group. It can be explained by the small number of the sample. Identifying which patients will benefit from allo-HSCT becomes increasingly challenging. The use of molecular markers are important in the refinement of risk stratification in intermediate risk group, assisting in the decision. Moreover, with the advent of the possibility of nonmyeloablative conditioning as an alternative to older patients and with worst rates of comorbidity, and the better supporting therapy, we may be less conservative in indicating this procedure, identifying the patients who may obtain better results during treatment of such aggressive and serious disease.
626

The non-apoptotic role of caspase-3 activation and its modulation in erythroid differentiation of TF-1 cells. / CUHK electronic theses & dissertations collection

January 2006 (has links)
Apart from CAD, the transient liberation of AIF during day 6 of TF-1 differentiation could pose another threat to the genomic DNA in cells. We have demonstrated the absence of AIF in the nucleus of TF-1 cells despite its release from the mitochondria by using confocal studies. Moreover, the expression of heat shock protein 70 kDa (Hsp70), a well-known antagonist of AIF, was found to be temporarily increased at day 6. Taken together, our results implied a plausible retention of AIF in the cytoplasm by Hsp70. Although Hsp70 is commonly utilized by many cancer cells to counteract AIF and avoid DNA fragmentation, we are the first to demonstrate its role in suppressing AIF during normal erythroid maturation. / As a whole, we have illustrated that the activated caspase-3, mediated most likely by the mitochondrial pathway, is an essential component in the differentiation of TF-1 cells. Its activation was nevertheless not coupled with DNA fragmentation due to some protective mechanisms such as CAD downregulation, Hsp70 upregulation and overexpression of Bcl-XL. Our study therefore provides some insights in the understanding of the relationship between human erythropoiesis and apoptosis and a better understanding in this regard will undoubtedly facilitate the development of new drugs in the treatment of different hematopoietic diseases. / Caspases play a central role in apoptosis. Their activations during the process are accounted for different biochemical and morphological changes in apoptotic cells. Yet in recent years, increasing studies had shown that caspases were also involved in some non-apoptotic cellular events, including T and B-lymphocytes activation, as well as the terminal differentiation of lens cells, megakaryocytes and erythrocytes. / In order to find out other unknown cellular mechanisms in erythropoiesis, mRNA differential display was employed to compare the gene expression pattern of TF-1 cells at different stages of differentiation. Several differentially expressed genes were identified and subsequently confirmed by RT PCR. These genes include formin binding protein 3, destrin and T-complex protein-1 (TCP-1). Their involvement in erythroid differentiation was still not clear at the moment but would be investigated in the near future. Furthermore, aiming at identifying the interacting proteins or inhibitors of caspase-3 in the system, a pull down assay was developed by means of the bacterial expression of a recombinant human caspase-3 mutant protein. With the mutation in the active site, the binding of our recombinant caspase-3 mutant with two known partners ICAD and BIRII (Baculovirus Inhibitor of apoptosis protein Repeat II) domain has been demonstrated. We hope in the near future that it can be employed to fish out some novel caspase-3 substrates from the differentiating TF-1 cell lysate. / In the present study, the participation of caspase in in vitro erythropoiesis was investigated using a human erythroleukemia cell line TF-1. Erythropoietin (EPO) induced erythroid maturation of TF-1 as indicated by the expression of erythroid-lineage markers like glycophorin A (GPA), transferrin receptors (CD71) and synthesis of hemoglobin (Hb). Activation of caspase-3 was observed from day 6 to day 12 during TF-1 differentiation after EPO treatment. With the administration of caspase-3 specific inhibitor, expressions of GPA and CD71 were partially blocked, suggesting that caspase-3 activation is essential in erythropoiesis in our TF-1 model. / Possible involvement of the intrinsic and extrinsic apoptotic pathways was studied by investigating respectively the activation of pro-caspase-9 and -8. It was found that caspase-9, but not -8, was activated at the corresponding time point when caspase-3 was activated. Besides, a transient mitochondrial depolarization coupled with the release of cytochrome c and apoptosis inducing factor (AIF) were detected on day 6, strongly implying a role of mitochondria in triggering the activation of executioner caspase-3. On the other hand, GPA and CD71 expressions were blocked by the application of mitochondrial depolarization inhibitor cyclosporin A (CyA). Also, the recovery of mitochondrial membrane potential was found to be correlated with an overexpression of Bcl-XL at a late stage of TF-1 differentiation, and the role of Bcl-XL was subsequently manifested further by a significant retardation of erythroid differentiation in the siRNA Bcl-XL knocked down TF-1 cells. / The exact role of caspase-3 in erythroid differentiation is far from clear at this moment. Yet, its regulation in the process is equally intriguing. On the course of TF-1 maturation, activated caspase-3 was able to cleave and de-localize the Inhibitor of Caspase-activated DNase (ICAD) from the nucleus, but at the same time DNA fragmentation was not detected by TUNEL assay nor agarose electrophoresis. Furthermore, protection against DNA fragmentation was observed in the EPO-treated TF-1 cells when challenged with a potent apoptotic inducer staurosporine (STS). These observations are in contrast to our understanding that DNA is fragmented by CAD (Caspase-activated DNase) when ICAD in the ICAD-CAD complex is cleaved by caspase-3. For these apparently contradictory observations, we demonstrated that downregulation of CAD occurred at the mRNA and protein levels during the erythroid differentiation in TF-1. This provides a cell rescuing mechanism in non-apoptotic cells with activated caspases. / Lui Chun Kin Julian. / "September 2006." / Adviser: Siu Kai Kong. / Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1620. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 239-253). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
627

Elaboration de nouvelles stratégies d'immunothérapie dans les leucémies aigües / Development of new immunotherapies in acute leukemias

Le Roy, Aude 15 June 2015 (has links)
Stimuler le système immunitaire est un enjeu majeur dans le traitement des leucémies aigües. Nous avons centré notre étude sur la leucémie aigüe myéloïde (LAM) et la leucémie à cellules dendritiques plasmacytoïdes (LAPDC). Dans une première partie, nous avons étudié les médicaments immunomodulateurs (IMiDs) utilisés dans le traitement du myélome multiple et des syndromes myélodysplasiques à délétion 5q. Les IMiDs présentent des propriétés anti-angiogéniques, anti-prolifératives, pro-apoptotiques, et immunomodulatrices en particulier sur les cellules NK (Natural Killer). Nous avons évalué les effets anti-leucémiques des IMiDs (lenalidomide et pomalidomide) dans le but d’améliorer l’activité cytotoxique des NK dans la LAM. Nous avons mis en évidence une altération de la survie des blastes de LAM par les IMiDs in vitro, et dans un modèle in vivo de greffe dans les souris immunodéficientes NOD/SCID/IL2rg-/- (NSG). Nous avons également montré une sensibilisation par les IMiDs des blastes de LAM à la lyse par les NK allogéniques, indépendamment de la cible moléculaire connue, le cereblon. Le traitement des blastes de LAM par IMiDs stimule les fonctions NK. Enfin, nous avons décrit des modifications phénotypiques induites par les IMiDs sur les récepteurs NK, et une diminution d’expression de HLA-classe I sur les cellules de LAM. Ces résultats encouragent la poursuite du développement des IMiDs dans la LAM, en particulier les associations stimulant les fonctions NK. Dans une seconde partie, nous avons développé un modèle murin de LAPDC dans la souris NSG. Cet outil préclinique est indispensable dans l’élaboration de stratégies d’immunothérapie dans les leucémies aigües. / Boosting the Immune System is a major challenge in the treatment of acute leukemias. We focused our study on acute myeloid leukemia (AML) and plasmacytoid dendritic cell leukemia (BPDCN). In the first part, we studied immunomodulatory drugs (IMiDs) that are currently used in the treatment of patients with myeloma and myelodysplastic syndrome with 5q deletion. IMiDs exhibit anti-angiogenesis, anti-proliferative, pro-apoptotic, and immunomodulatory properties especially on NK cells and T lymphocytes. We investigated the anti-leukemic effects of two IMiDs (lenalidomide and pomalidomide) in order to improve NK cell cytotoxic activity in AML. We have shown that IMiDs impaired survival of AML blasts in vitro, and in vivo in NOD/SCID/IL2rg-/- (NSG) murine model. In addition, IMiDs treatment sensitized AML blasts to allogeneic NK cell mediated lysis, independently of Cereblon, the known molecular target of IMiDs. IMiDs treatment of AML blasts enhanced NK cell functions such as degranulation and cytokine production. Finally, we have described phenotypic changes induced by IMiDs on NK receptors, and a down-regulation of HLA-class I on AML blasts. These results encourage continuing investigation for the use of IMiDs in AML, especially in combination with immunotherapies based on NK cells. In a second part, we have developed a murine model of plasmacytoid dendritic cell leukemia (BPDCN) in NSG mice. Murine model of leukemia are essential preclinical tools in the development of new immunotherapies in acute leukemias.
628

Étude cristallographique du domaine catalytique de l’intégrase du virus RAV-1 (rous associated virus type 1) et découverte d’une nouvelle interface de dimérisation / The crystallographic study of the catalytic core domain of the avian rous associated virus type 1 (rav-1) integrase reveals a novel dimeric assembly

Ballandras, Allison 30 November 2010 (has links)
Au cours du cycle réplicatif des rétrovirus, l’ADN viral rétro-transcrit est intégré dans l’ADN de la cellule hôte par l’intégrase virale (IN). L’IN possède un rôle clé dans le cycle rétroviral et représente une cible thérapeutique majeure pour le traitement des infections par le virus de l’immunodéficience humaine (VIH). L’IN est constituée de trois domaines (N-terminal, central et C-terminal) connectés par des boucles flexibles, qui la rendent difficilement cristallisable. Le Dr. C. Ronfort (Equipe Rétrovirus et Intégration Rétrovirale) et le Pr. P. Gouet (Laboratoire de BioCristallographie) collaborent depuis 2002 sur l’IN du Rous Associated Virus type 1 (RAV-1). Mes travaux de thèse s’inscrivent dans le cadre de cette collaboration. Il s’agissait de mener une étude cristallographique et moléculaire du domaine central de l’IN du RAV-1 pour pouvoir, ensuite, modéliser des mutants d’intérêt identifiés par l’équipe du Dr. C. Ronfort. Pour ce faire, le fragment protéique a été surproduit et purifié. Sa structure cristallographique a été résolue à une résolution de 1,8 Å. L’examen de cette structure révèle que le dimère de l’IN du RAV-1 peut s’assembler suivant une nouvelle interface moléculaire stabilisée par trois paires d’hélices α. Cet assemblage se caractérise également par la présence d’un étroit sillon basique à sa surface. Par des expériences in vitro de biochimie et in silico de docking, nous avons montré que ce sillon était susceptible de fixer un brin d’ARN. D’autre part, nos données expérimentales permettent d’expliquer comment les conditions de cristallisation, ainsi que la substitution d’un acide aminé de surface, favorisent la formation soit de ce nouvel arrangement dimérique, soit de l’arrangement dimérique classique. Ainsi, l’ensemble des données obtenues au cours de cette thèse suggère que l’intégrase possède des propriétés structurales modulables, lui permettant d’intervenir dans plusieurs étapes du cycle rétroviral en présence d’ADNdb (intégration) ou d’ARNsb (rétro-transcription et/ou encapsidation du génome ARN viral) / During the replicative cycle of retroviruses, the retrotranscribed viral DNA is integrated into the host chromosome by the viral integrase protein (IN). The integration reaction is essential for the viral life cycle. Therefore, IN is a key target for antiretroviral drug design to treat HIV infection. IN consists of three domains (N-terminal, central and Cterminal) connected by flexible loops, making the enzyme difficult to crystallize. Dr C. Ronfort (Team Retrovirus and Retroviral Integration) and Pr P. Gouet (BioCrystallography Laboratory) collaborate since 2002 in Lyon to study IN from the Rous Associated Virus type 1 (RAV-1). My thesis work lies within this collaboration. Its objective was to perform crystallographic and molecular studies of the central domain of RAV-1 IN and of mutants of interest identified by the team of Dr C. Ronfort. In this aim, the IN fragment has been overexpressed and purified. Its crystal structure has been solved to a resolution of 1.8 Å. The observation of this structure reveals that the RAV-1 IN can exhibit a novel dimeric arrangement with a molecular interface stabilized by three pairs of facing α-helices. This arrangement is also characterized by the presence of a basic narrow groove at its surface. Thanks to biochemical in vitro experiments and in silico docking studies, we have shown that this median groove could allow the binding of a linear singlestranded RNA. Moreover, our experimental data can explain how the crystallization conditions as well as the mutation of a specific residue located at the surface of the enzyme favor either this novel dimeric arrangement or the classical dimeric interface. Therefore, the data obtained during this thesis suggest that IN exhibits modular structural properties, allowing it to operate in several distinct steps of the retroviral cycle in presence of dsDNA (integration) or ssRNA (reverse transcription and/or encapsidation of the retroviral RNA genome)
629

Analysis of Immunoglobulin Genes and Telomeres in B cell Lymphomas and Leukemias

Walsh, Sarah January 2005 (has links)
<p>B cell lymphomas and leukemias are heterogeneous tumors with different cellular origins. Analysis of immunoglobulin (Ig) genes enables insight into the B cell progenitor, as Ig somatic hypermutation correlates with antigen-related B cell transit through the germinal center (GC). Also, restricted Ig variable heavy chain (V<sub>H</sub>) gene repertoires in B cell malignancies could imply antigen selection during tumorigenesis. The length of telomeres has been shown to differ between GC B cells and pre/post-GC B cells, possibly representing an alternative angle to investigate B cell tumor origin. </p><p>Mantle cell lymphoma (MCL), previously postulated to derive from a naïve, pre-GC B cell, was shown to have an Ig-mutated subset (18/110 MCLs, 16%), suggestive of divergent cellular origin and GC exposure. Another subset of MCL (16/110, 15%), characterized by V<sub>H</sub>3-21/V<sub>λ</sub>3-19 gene usage, alludes to a role for antigen(s) in pathogenesis, also possible for hairy cell leukemia (HCL) in which the V<sub>H</sub>3-30 gene (6/32, 19%) was overused. HCL consisted mainly of Ig-mutated cases (27/32, 84%) with low level intraclonal heterogeneity, contrasting with the proposed post-GC origin, for both Ig-mutated and Ig-unmutated HCLs. For MCL and HCL, derivation from naïve or memory marginal zone B cells which may acquire mutations without GC transit are tempting speculations, but currently little is known about this alternative immunological pathway. Heavily mutated Ig genes without intraclonal heterogeneity were demonstrated in lymphoplasmacytic lymphoma/Waldenström’s macroglobulinemia (13/14, 93%), confirming that the precursor cell was transformed after GC affinity maturation. Telomere length analysis within 304 B cell tumors revealed variable lengths; shortest in the Ig-unmutated subset of chronic lymphocytic leukemia, longest in the GC-like subtype of diffuse large B cell lymphoma, and homogeneous in MCL regardless of Ig mutation status. However, telomere length is complex with regard to GC-related origin.</p><p>In summary, this thesis has provided grounds for speculation that antigens play a role in MCL and HCL pathogenesis, although the potential antigens involved are currently unknown. It has also enabled a more informed postulation about the cellular origin of B cell tumors, which will ultimately enhance understanding of the biological background of the diseases. </p>
630

Analysis of Immunoglobulin Genes and Telomeres in B cell Lymphomas and Leukemias

Walsh, Sarah January 2005 (has links)
B cell lymphomas and leukemias are heterogeneous tumors with different cellular origins. Analysis of immunoglobulin (Ig) genes enables insight into the B cell progenitor, as Ig somatic hypermutation correlates with antigen-related B cell transit through the germinal center (GC). Also, restricted Ig variable heavy chain (VH) gene repertoires in B cell malignancies could imply antigen selection during tumorigenesis. The length of telomeres has been shown to differ between GC B cells and pre/post-GC B cells, possibly representing an alternative angle to investigate B cell tumor origin. Mantle cell lymphoma (MCL), previously postulated to derive from a naïve, pre-GC B cell, was shown to have an Ig-mutated subset (18/110 MCLs, 16%), suggestive of divergent cellular origin and GC exposure. Another subset of MCL (16/110, 15%), characterized by VH3-21/Vλ3-19 gene usage, alludes to a role for antigen(s) in pathogenesis, also possible for hairy cell leukemia (HCL) in which the VH3-30 gene (6/32, 19%) was overused. HCL consisted mainly of Ig-mutated cases (27/32, 84%) with low level intraclonal heterogeneity, contrasting with the proposed post-GC origin, for both Ig-mutated and Ig-unmutated HCLs. For MCL and HCL, derivation from naïve or memory marginal zone B cells which may acquire mutations without GC transit are tempting speculations, but currently little is known about this alternative immunological pathway. Heavily mutated Ig genes without intraclonal heterogeneity were demonstrated in lymphoplasmacytic lymphoma/Waldenström’s macroglobulinemia (13/14, 93%), confirming that the precursor cell was transformed after GC affinity maturation. Telomere length analysis within 304 B cell tumors revealed variable lengths; shortest in the Ig-unmutated subset of chronic lymphocytic leukemia, longest in the GC-like subtype of diffuse large B cell lymphoma, and homogeneous in MCL regardless of Ig mutation status. However, telomere length is complex with regard to GC-related origin. In summary, this thesis has provided grounds for speculation that antigens play a role in MCL and HCL pathogenesis, although the potential antigens involved are currently unknown. It has also enabled a more informed postulation about the cellular origin of B cell tumors, which will ultimately enhance understanding of the biological background of the diseases.

Page generated in 0.2579 seconds