• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 436
  • 337
  • 100
  • 45
  • 29
  • 24
  • 22
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 6
  • Tagged with
  • 1154
  • 221
  • 135
  • 127
  • 108
  • 90
  • 83
  • 77
  • 71
  • 71
  • 69
  • 67
  • 62
  • 60
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Investigation of the effects of IGF-1 receptor blockade on chemoresistance of advanced melanoma

Ramcharan, Roger Navine January 2014 (has links)
Advanced melanoma poses a major therapeutic challenge, and despite the development of recent promising therapeutic agents, resistance to treatment remains a problem. Until recently, despite low response rates, alkylating agents dacarbazine and temozolomide (TMZ) were the standard of care for the treatment of advanced melanoma. The cytotoxic effects of these agents relies upon the formation of alkylated base lesions such as O<sup>6</sup>-methylguanine (O<sup>6</sup>MeG), which is repaired by a protein implicated in TMZ resistance called O<sup>6</sup>-methylguanine-DNA methyltransferase (MGMT). Failure to resolve such alkylated bases results in DNA replication-associated double-strand breaks (DSBs). The type 1 insulin-like growth factor receptor (IGF-1R) mediates a number of characteristics common to cancers, including proliferation and survival, and evidence suggests it may also contribute to resistance to many anticancer agents. The aims of this study were to test whether melanoma cells could be sensitized to TMZ by small molecule IGF1R inhibitors, and to explore the mechanism of any chemosensitization. This study found an association between basal IGF1R phosphorylation and in vitro TMZ resistance in seven MGMT-proficient melanoma cell lines, suggesting that IGF1R activation may be linked with TMZ resistance. Furthermore, IGF1R inhibition caused dose-dependent sensitization of melanoma cells to TMZ, regardless of BRAF mutation status. This reduction in cell survival was not accompanied by an increase in apoptosis, but rather Chk2 activation and an accumulation of cells in the G2/M phase of the cell cycle, suggesting a possible effect of IGF1R inhibition on DNA repair. IGF1R depletion was found to increase MGMT protein levels and activity, but this effect was not seen in IGF1R inhibited cells. In addition, IGF1R inhibition was not epistatic with MGMT inhibition, and IGF1R inhibition reduced survival of TMZ treated MGMT-null cells. This suggested that TMZ sensitization by IGF1R inhibition was independent of MGMT. IGF1R inhibition did however cause an increase in the accumulation of TMZ-induced RPA foci, and delay in resolution of RAD51 foci. Together with the finding that IGF1R inhibition reduced survival in PARP inhibited melanoma cells, these results suggested that IGF1R inhibition influenced DSB repair by homologous recombination. Finally, the combination of IGF1R inhibition with TMZ was tested in a mouse model and was found to be tolerable. TMZ or IGF-1R inhibitor alone caused minor reduction in melanoma xenograft growth rates (rate reduction by 13% and 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from other treatment groups (p<0.05). The findings of this study suggest IGF1R inhibition as a possible option in overcoming alkylating drug resistance in melanoma.
422

An integrated bioinformatics approach for the identification of melanoma-associated biomarker genes : a ranking and stratification approach as a new meta-analysis methodology for the detection of robust gene biomarker signatures of cancers

Liu, Wanting January 2014 (has links)
Genome-wide microarray technology has facilitated the systematic discovery of diagnostic biomarkers of cancers and other pathologies. However, meta-analyses of published arrays using melanoma as a test cancer has uncovered significant inconsistences that hinder advances in clinical practice. In this study a computational model for the integrated analysis of microarray datasets is proposed in order to provide a robust ranking of genes in terms of their relative significance; both genome-wide relative significance (GWRS) and genome-wide global significance (GWGS). When applied to five melanoma microarray datasets published between 2000 and 2011, a new 12-gene diagnostic biomarker signature for melanoma was defined (i.e., EGFR, FGFR2, FGFR3, IL8, PTPRF, TNC, CXCL13, COL11A1, CHP2, SHC4, PPP2R2C, and WNT4). Of these, CXCL13, COL11A1, PTPRF and SHC4 are components of the MAPK pathway and were validated by immunocyto- and immunohisto-chemistry. These proteins were found to be overexpressed in metastatic and primary melanoma cells in vitro and in melanoma tissue in situ compared to melanocytes cultured from healthy skin epidermis and normal healthy human skin. One challenge for the integrated analysis of microarray data is that the microarray data are produced using different platforms and bio-samples, e.g. including both cell line- and biopsy-based microarray datasets. In order to address these challenges, the computational model was further enhanced the stratification of datasets into either biopsy or cell line derived datasets, and via the weighting of microarray data based on quality criteria of data. The methods enhancement was applied to 14 microarray datasets of three cancers (breast, prostate, and melanoma) based on classification accuracy and on the capability to identify predictive biomarkers. Four novel measures for evaluating the capability to identify predictive biomarkers are proposed: (1) classifying independent testing data using wrapper feature selection with machine leaning, (2) assessing the number of common genes with the genes retrieved in independent testing data, (3) assessing the number of common genes with the genes retrieved in across multiple training datasets, (4) assessing the number of common genes with the genes validated in the literature. This enhancement of computational approach (i) achieved reliable classification performance across multiple datasets, (ii) recognized more significant genes into the top-ranked genes as compared to the genes detected by the independent test data, and (iii) detected more meaningful genes than were validated in previous melanoma studies in the literature.
423

Insights into the mechanism of drug action of a novel silver(I) chemotherapeutic against a malignant melanoma cell line

29 June 2015 (has links)
MSc. (Biochemistry) / GLOBOCAN 2008 Survey reported that 12.7 million cancer cases with 7.6 million cancer deaths occurred with an astonishing 56% of these cases and 64% of these deaths allocated to economically developing countries, such as South Africa. Statistics are alarming concerning cutaneous malignant melanomas (CMM) with the World Health Organisation (WHO) estimating that 132 000 new cases of CMM arise per annum internationally with CMM incidence rates showing an increase of 28% in men and 12% increase in women worldwide; whilst the Cancer Association of South Africa (CANSA) has reported that skin cancer is the most common cancer in South Africa, with an estimated 20 000 new cases being reported per annum. Normal cells progressively transform into malignant tumours by a process that requires sequential acquisition of mutations in a genome damaged by various intrinsic and exogenous incidences resulting in two distinct and functional outcomes: 1) activation and/or expression of unfavourable oncogenes and 2) inactivation of tumour suppressor genes that code for proteins involved in checkpoints to cell proliferation or cell death. Transformation of dendritic melanocytic epidermal skin cells give rise to different types of skin cancers with CMM being predominant with poor prognosis and 90% of all deaths associated with cutaneous type tumours and CMM has been classified as a multifactorial disease where both environmental and genetic factors/mutations interact in concert to contribute to CMM susceptibility. Conceptual progress in the last decade has added two emerging hallmarks showing increased potential in generality to the already six known hallmarks of cancer, namely reprogramming of cellular energy metabolism and evasion of immune destruction by T and B lymphocytes and macrophages, enabled by core hallmark cancer characteristics such as genome instability and tumour-promoting inflammation. The Warburg Effect has been described, in terms of metabolic particularities of cancers, as an increased glucose uptake, via a shift in energy production from oxidative phosphorylation to a glycolytic pathway, with increased extracellular lactate release by tumours resulting in a consequent decrease in pH in the surrounding tissues, even in the presence of oxygen. This effect contributes to proliferation, invasiveness, metastasis and angiogenesis of malignant cells. Thus, chronic and uncontrolled cell proliferation, representing the essence of tumour growth, involves not only deregulatory control of cell proliferation but also a parallel adjustment to energy metabolic pathways in order to fuel cell growth and division. Over the last twenty years, studies have shown that the concept of programmed cell death (PCD), by apoptosis, serves as a natural barrier to cancer development where both the intrinsic and extrinsic apoptotic circuits conclude in the implementation of progressively...
424

Synthèse d'analogues de mycosporines par catalyse à l'or et évaluation de leurs activités photoprotectrices

Nguyen, Khanh Hung 15 November 2013 (has links)
Le nombre de cancers et notamment de cancers photoinduits étant en augmentation, il est indispensable d’identifier de nouvelles molécules protectrices de type filtres UV, réparatrices vis-à-vis des altérations de l’ADN mais également favorisant la réponse pigmentaire. Les lichens sont des organismes originaux qui possèdent des qualités de résistance remarquables aux rayonnements solaires dues notamment à la production de métabolites photoprotecteurs tels que les mycosporines. A partir de ce motif structural original, nous avons synthétisé divers analogues par catalyse à l’or en utilisant un outil de la chimie théorique (TD-DFT) pour orienter les synthèses. Les premières évaluations de leurs propriétés physico-chimiques des molécules ont montré des activités prometteuses. / For several years, melanoma is the cancer with 84,000 new cases per year in Europe, including over 7000 cases in France, in 2010. One of the major causes of this cancer is the excessive exposure to UV radiations and it has been suggested that UV-A may be the primary cause of sunlight-induced melanoma. Hence, sunscreens with a good absorption in the UV-A spectral range need to be developed with a good efficacy and photostability. Lichens are original sources for the development of new UV filters because they possess ability to absorb UV due to the presence of metabolites such as mycosporines or MAAs (mycosporines like aminoacid). Based on the general structure of mycosporines, we have synthesized various analogues of mycosporines using a gold-catalyzed strategy. To orientate the synthesis, we used the method of the quantum chemistry: TD-DFT (Time-dependent density functional theory). These products were analyzed for their UV profiles and some of them showed good absorbing properties in UVA range. The cytotoxicity assay showed no toxicity of all products evaluated.
425

Role nádorového mikroprostředí v invazivitě buněk melanoma / The Role of the Tumour Microenvironment on Melanoma Cell Invasiveness

Jobe, Njainday January 2016 (has links)
Cancer cell invasion and metastasis are hallmarks of cancer. It is becoming apparent that the interaction between cancer cells and the surrounding microenvironment are involved in their ability to invade and metastasise. In general, cancer cells can either migrate individually, in an amoeboid or mesenchymal manner, or collectively. The first aim of this thesis was to analyse the role of NG2 in amoeboid to mesenchymal transition (AMT) and Rho/ROCK signalling. We found that NG2 promotes an amoeboid morphology, and increased invasiveness, in a Rho-dependent manner. Secondly, we analysed the role of the major tumour microenvironment (TME) component, cancer-associated fibroblasts (CAFs), on melanoma cell invasiveness. We found the CAF interaction with melanoma cells leads to increased levels of interleukin-6 (IL-6) and IL-8, and this leads to increased invasiveness. Simultaneous blocking of IL-6 and IL-8, using neutralising antibodies, inhibits CAF-dependent invasion. Further analysis of another major component in the melanoma TME, keratinocytes, has highlighted the importance of the tumour cell niche in invasion. Our results indicate that cancer cells have the ability to change morphology, and that the TME plays an important role in melanoma cell invasiveness. Metastatic melanoma treatment has proven...
426

Atomic force spectroscopy in melanoma and keratinocytes cells. / Espectroscopia de força atômica em células de melanoma e queratinócitos

Reinoza, Nataly Zaribeth Herrera 21 March 2019 (has links)
In this work, we used atomic force spectroscopy to obtain the elastic modulus of melanoma and keratinocytes fixed cells, with the purpose to determine the initial conditions for studies of confluente cultures of these cells in the future. The cell lines used were HaCaT cells and WM1366 melanoma cell, the last one is derived from a radial growth melanoma and both were analyzed, parental WM1366 cells (WM1366 shSCR cells) and galectin-3 silenced WM1366 cells (WM1366 shGal3). Cells were located and images of them were obtained by AFM contact mode under liquid conditions. Single force curves acquired in the central region of cells were used to determine the elastic modulus by the Hertzian contact model for the pyramidal tip, allowing to establish a comparison patter between cancer and normal cells. It was found that the melanoma cell (21.8 ± 0.5 kPa) exhibit smaller elastic modulus than keratinocytes cells (31.9 ± 0.4 kPa). For WM1366 shGal3 was found a elastic modulus of 16.1 ± 0.6 kPa, therefore, we found that for large indentation depth it is possible to distinguish between the same melanoma cell line, which represents general alterations in the organization of the cytoskeleton induced by the presence or absence of the galectin-3 protein. On the other hand, to detect local elastic modulus variations along the cell and to identify subcellular regions characterized by specific stiffness associated with local structures, we took elasticity maps in which a single force curve is acquired in each probe position. In order to interpret these maps, the cell was sliced into several different heights, curves of each height section were analyzed and represented in histograms, adjusted by the binomial distribution function. It was observed that the gradient of elastic modulus in cells from the nuclear region towards the cell periphery is more pronounced in cells devoid of galectin-3 than parental cells. The increased elastic modulus in the pericellular region of cells devoid of galectin-3 suggests that the organization of the extracellular matrix in these areas is different than those observed around HaCaT and shSCR WM1366 cells. / Neste trabalho, utilizamos espectroscopia de força atômica para obtenção do módulo elástico de células fixadas de melanoma e queratinócitos, com o objetivo de determinar as condições iniciais de estudos a serem realizados futuramente de culturas de células confluentes do mesmo tipo. As linhagem celulares utilizadas foram as células HaCaT e as células de melanoma WM1366, sendo a última derivada de um melanoma de crescimento radial sendo analisadas tanto as células parentais (células WM1366 shSCR) e as células WM1366 silenciadas com galectina-3 (WM1366 shGal3). As células foram localizadas e imageadas no modo AFM contato em meio líquido. Curvas de força adquiridas na região central das células foram utilizadas para determinar o módulo elástico, a partir do modelo de contato hertziano por uma ponta piramidal, permitindo estabelecer um padrão para comparação entre células normais e cancerígenas. Verificou-se que a célula de melanoma exibe menor módulo de elasticidade (21.8 ± 0.5 kPa) do que as células de queratinócitos (31.9 ± 0.4 kPa). Para as células WM1366 shGal3 foi encontrado um módulo elástico de 16.1 ± 0.6 kPa. Portanto, verificou-se que, para grandes profundidades de indentação, é possível distinguir entre a mesma linhagem de melanoma, células que apresentam alterações gerais na organização do citoesqueleto induzidas pela presença ou ausência da proteína galectina-3. Por outro lado, para detectar variações locais do módulo elástico ao longo da célula e identificar regiões subcelulares, caracterizadas por rigidez específica associada a estruturas locais, foram obtidos mapas de elasticidade nos quais uma única curva de força é adquirida em cada posição da sonda. Para interpretar estes mapas, a célula foi dividida em regiões de diferentes alturas e curvas de cada seção de altura foram analisadas e representadas em histogramas, ajustadas pela função de distribuição binomial. Observou-se que o gradiente de módulo de elasticidade em células da região nuclear em direção à periferia celular é mais acentuado em células desprovidas de galectina-3 do que em células parentais. O aumento do módulo de elasticidade na região pericelular das células desprovidas de galectina-3 sugere que a organização da matriz extracelular nestas áreas é diferente das observadas em torno das células HaCaT e shSCR WM1366.
427

Skin lesion segmentation and classification using deep learning

Unknown Date (has links)
Melanoma, a severe and life-threatening skin cancer, is commonly misdiagnosed or left undiagnosed. Advances in artificial intelligence, particularly deep learning, have enabled the design and implementation of intelligent solutions to skin lesion detection and classification from visible light images, which are capable of performing early and accurate diagnosis of melanoma and other types of skin diseases. This work presents solutions to the problems of skin lesion segmentation and classification. The proposed classification approach leverages convolutional neural networks and transfer learning. Additionally, the impact of segmentation (i.e., isolating the lesion from the rest of the image) on the performance of the classifier is investigated, leading to the conclusion that there is an optimal region between “dermatologist segmented” and “not segmented” that produces best results, suggesting that the context around a lesion is helpful as the model is trained and built. Generative adversarial networks, in the context of extending limited datasets by creating synthetic samples of skin lesions, are also explored. The robustness and security of skin lesion classifiers using convolutional neural networks are examined and stress-tested by implementing adversarial examples. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
428

Observações sobre o uso clínico de interferon alfa como modulador da expressão de antígenos de superfície em melanoma maligno metastático

Marroni, Belmonte Juarez January 1994 (has links)
o autor avaliou a capacidade de retenção do anticorpo monoclonal22528S, o qual reconhece antígenos de alto peso molecular na. superficie de células de melanoma maligno humano, em 49 pacientes com confirmação histopatológica da neoplasia, após a administração endovenosa do anticorpo marcado com tecnécio, e posterior quantificação da captação tumor/tecido normal, através de imunocintilografia. Uma vez confirmada a segurança do método e a localização preferencial do imunoconjugado no tecido tumoral, o autor estudou o efeito do interferon alfa como modulador da expressão de antígenos de superficie e, por conseguinte, o seu potencial impacto na retenção do imunoconjugado no tecido tumoral. Utilizando o paciente como seu próprio controle, foi possível observar um incremento na retenção do imunoconjugado em sítios metastáticos pré-definidos em 8/10 pacientes. Dada a complexidade do fenômeno e o limitado número de casos estudados, optou-se pelo não tratamento estatístico dos dados e sim por sua discussão sob a forma preliminar. Pôde-se caracterizar uma tendência à maior concentração do imunoconjugado no tumor após o uso do interferon alfa. Cabe ressaltar que, em um caso, foi documentada conversão de uma metástase não-captante em uma lesão altamente captante após a administração do imunomodulador. Esta estratégia não havia sido estudada previamente em pacientes portadores desta neoplasia. Considerando a potencial aplicação diagnóstica e \ terapêutica do uso de anticorpos monoclonais em neoplasias malignas, esta observação de um efeito modulador da expressão de antígenos tumorais específicos, através da administração concomitante de interferon alfa, aumentando a retenção do anticorpo no tecido tumoral, poderá vir a representar um valioso recurso no futuro. / The author evaluated the ability of the monoclonal antibody 22825S, which recognizes high-molecular weight cell surfàce antigens in human malignant melanoma, of being retained preferentially in 49 patients with histopathologically-proven malignant melanoma, following the intravenous administration of the thecnecium-labelled monoclonal ,antibody. The retention of the immunoconjugate in the tumor versus normal tissues was measured using irrilllunocintilographic tools. Following the documentation of the safety, feasibility and preferential antibody retention in the tumor tissue of melanoma patients, the author studied the effect of alpha-interferon as a modulator of cell surface antigen expression and thus, its impact on the retention of the immunoconjugate in the tumor. Using each patient as his own control, an enhancement of antibody localization in the tumor was demonstrated in 8 out of 10 cases. Due to the complexity of this phenomenon and the limited number of patients, the author decided to describe the results as preliminary observations without application of statistical tools. Notably, the administration of alpha interferon was able to convert a "cold" but histopathologically-confirmed metastatic lesion in one patient in a highly positive site, as quantified by immunocintilography. To the knowledge of the author, the above strategy was never applied to malignant melanoma patients before. Considering the potential application of monoclonal antibodies in cancer \ diagnostic and therapy, the above mentioned provocative observation of a modulatory effect of tumor antigens expression by interferons in men, leading to an increased retention of the antibody at the tumor site, may have important applications in the future.
429

A study of matrix metalloproteinases in cancer and atherosclerosis

Laxton, Ross Campbell January 2012 (has links)
Background: Matrix metalloproteinases (MMPs) have been shown to be involved in cancers and atherosclerosis, the leading causes of present day mortality. The objectives of the cancer element of this project were to investigate single nucleotide polymorphisms (SNPs) in MMP1 and MMP8 regarding breast cancer and malignant melanoma, and a functional characterisation of the genetic variants, including the MMP1 polymorphism rs19799750, previously associated with multiple cancers. The objective of the second part of this project was to investigate whether MMP8 played a role in the development of atherosclerotic lesions and if so, the underlying mechanisms. Methods/Results: Genetic investigations found the MMP8 SNP rs11225395 to be associated with the occurrence of both breast cancer and malignant melanoma; furthermore it was also associated with reduced lymph node metastasis, reduced cancer relapse and greater survival. Functional luciferase assays showed that the minor allele of the polymorphism has higher promoter activity in breast cancer and melanoma cell lines. They also showed haplotypic effects on MMP1 promoter activity in several cancer cell lines by the 2G allele of polymorphism rs1799750 and one or more MMP1 promoter SNPS. The second part of the study found an association between a MMP8 SNP and the extent of coronary atherosclerosis; additionally a relationship among MMP8 gene variation, plasma VCAM-1 level, and atherosclerosis progression was observed in a prospective study. Murine studies showed reduced atherosclerosis in MMP8/ApoE knockout mice compared with ApoE knockout littermate controls. Biochemical studies confirmed that MMP8 can convert angiotensin I to angiotensin II. Conclusions: The data of the first part of this project support the notion that genetic polymorphisms in the MMP1 and MMP8 influence the expression of these genes and the development and progression of cancer. The results of the second part of this project indicate an important role of MMP8 in the pathogenesis of atherosclerosis.
430

The role of glutaredoxin-1 on B16F0 melanoma growth and angiogenesis in diet-induced diabetic mice

Chong, Brian Sung Ho 11 July 2018 (has links)
OBJECTIVES: Recent studies have elucidated that diabetes mellitus (DM) patients exhibit an accelerated tumor progression, but the mechanism of its regulation is not yet fully understood. The following study seeks to examine the role of angiogenic factors in the growth of subcutaneously injected melanoma cancer using a diet-induced type II diabetic mouse model. METHODS: C57BL/6 mice were fed either a regular or high-fat, high-sucrose (HFHS) diet for 2 months (T2DM model; confirmed through a GTT) and subcutaneously injected with B16F0 melanoma cells. After a 1-week or 2-week incubation period, the tumor was extracted to examine its size, weight, vascularity, and gene/protein expression. In vitro studies were performed using endothelial cells to assess the effects of high-glucose on endothelial cell proliferation, migration, and tube formation. GLRX expression was examined in both tumor samples and endothelial cells. RESULTS: The results of the study showed that T2DM induced by a HFHS diet is able to promote tumor growth in both weight (2-week, p = 0.0070) and volume (1-week, p = 0.0351; 2-week, p = 0.0002). Tumors extracted from the HFHS diet group showed reduced expressions of angiogenic markers (ACTA2 (1-week, p = 0.0239; 2-week, p = 0.0123), KDR (1-week, p = 0.0091)) by western blot and a slightly reduced trend of angiogenesis (PECAM1) in histological analyses. GLRX expression was reduced in HFHS tumor samples (1-week, p = 0.0090) and, interestingly, lower amounts of GSH adducts (2-week, p = 0.0317) could be seen in 2-week tumors as well. In vitro studies of endothelial cells showed reduced trends of endothelial cell function (proliferation, migration, and tube formation) in high glucose medium. Also, it has been observed that high glucose may be able to stimulate GLRX expression in endothelial cells. CONCLUSION: The results of the following study have confirmed that B16F0 melanoma growth is, in fact, augmented in diet-induced diabetic mice; however, the vascularity and levels of angiogenic markers from the tumor tissues did not parallel the growth in its size. In vitro studies suggested that high glucose can impair EC function (i.e. proliferation, migration, and tube formation capabilities) as well as promote GLRX expression, which may be related to this discrepancy. Glutaredoxin-1 (GLRX), an enzyme which controls redox signaling, is upregulated in DM. Endothelial cell-specific GLRX overexpression in transgenic mice was found to stimulate subcutaneously injected melanoma (B16F0) growth, despite hindering limb revascularization after hind limb ischemia. The augmented tumor progression in DM may be associated with GLRX upregulation, alongside impaired ischemic limb revascularization and tumor angiogenesis; however, the mechanism of tumor growth in diabetes still lies inconclusive and further studies need to be examined to elucidate this phenomenon.

Page generated in 0.4721 seconds