• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 11
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 16
  • 12
  • 9
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Avaliação in vitro da entrega do gene da glicoproteína do vírus da raiva através de vetores não virais. / In vitro evaluation of the rables virus glycoprotein gene delivery using non viral vectors.

Daniela Flores Teruya Astudillo 13 December 2016 (has links)
Um dos principais limitantes ao desenvolvimento e aprovação para utilização em humanos das vacinas de DNA é a falta de um vetor ideal de entrega gênica, que seja ao mesmo tempo eficiente e seguro. Embora mais seguros, os vetores não virais enfrentam uma série de barreiras físicas, enzimáticas e difusionais que limitam a chegada do transgene ao núcleo das células alvo. Dando continuidade ao trabalho desenvolvido em nosso grupo de pesquisa, o principal objetivo desta dissertação de mestrado foi avaliar o desempenho do vetor não viral comercial Lipofectamina e da proteína multifuncional T-Rp3 na entrega do gene da glicoproteína do vírus da raiva (RVGP) a células BHK-21. Primeiramente, o gene RVGP foi inserido no plasmídeo modelo pVAX1. Foram então realizados estudos de transfecção em células BHK-21 (Baby Hamster Kidney), utilizando-se Lipofectamina como agente de transfecção, no sentido de constatar a correta expressão do gene RVGP contido no novo plasmídeo. Como controle positivo, foi utilizado o plasmídeo pCMV-RVGP. Os estudos de PCR quantitativo da transcrição reversa (qRT-PCR) e imunofluorescência indicaram a expressão da glicoproteína pelo pVAX1RVGP, ainda que em valores de expressão menores se comparados com o plasmídeo controle pCMV-RVGP. Foi também desenvolvido com sucesso um método quantitativo de determinação da expressão da RVGP em células utilizando-se citometria de fluxo, que confirmou os resultados anteriores. Devido ao plasmídeo pVAX1RVGP ter apresentado baixa eficiência de expressão da RVGP, buscou-se a elevação da eficiência a partir da adição da sequência de KOZAK no plasmídeo pVAX1RVGP. Nesse caso, ainda que os resultados indiquem um aumento na expressão, não houve confirmação estatística (p<0,05). Os estudos de entrega com a proteína T-Rp3 foram realizados com um lote da T-Rp3 armazenada em ultrafreezer. A proteína demonstrou-se não ser estável após o congelamento em nitrogênio líquido e armazenamento em ultrafreezer pelo tempo de 10 meses. Apesar de ser capaz de complexar o pDNA após esse tempo, não foi eficiente em ensaios de transfecção, tendendo a agregar em relações molares altas e ausência de soro fetal bovino. / One of the major bottlenecks on the development and approval of DNA vaccines in humans is the lack of an ideal gene delivery vector, which must be safe and efficient at the same time. Although safer, the non-viral vectors face a series of physical, enzymatic and diffusion barriers that limits the arrival of the endogenous gene in the nuclei of the target cells. The main goal of this work was the evaluation of the performances of the commercial non-viral vector Lipofectamine, and the recombinant protein T-Rp3, a multifunctional protein, on the delivery of the rabies virus glycoprotein (RVGP) gene to BHK-21 cells. First, the RVGP gene was inserted into the pVAX1 plasmid, and transfections using BHK-21 (Baby Hamster Kidney) cells were performed using the Lipofectamine reagent to verify the correct expression of the RVGP gene present in the new plasmid. As a positive control, the plasmid pCMV-RVGP was used. The quantitative reverse transcription (qRT-PCR) and immunofluorescence studies indicated the expression of RVGP from pVAX1RVGP, although in lower expression values in comparison to the control plasmid. In addition, a flow cytometry quantitative method to quantify and compare the expression of the RVGP in the membrane of the transfected cells was developed, confirming the previous results. With the purpose of increase, the expression of RVGP, the KOZAK consensus sequence was added to the new pVAX1RVGP plasmid, and despite of the apparent increase of RVGP expression, this could not be confirmed statistically. The experiments of gene delivery using the T-Rp3 protein were performed using a protein batch storaged in ultrafreezer for 10 months. However, the protein has shown not being stable after storage for this long period. Moreover, despite of being capable to complex pDNA after this time, T-Rp3 was not efficient in the transfection assays and tended to aggregate in high molar ratios.
32

Chitosan Polyplexes as Non-Viral Gene Delivery Systems : Structure-Property Relationships and In Vivo Efficiency

Köping-Höggård, Magnus January 2003 (has links)
<p>The subject of this thesis was to develop and optimize delivery systems for plasmid DNA (pDNA) based on biocompatible polymers, in particular chitosan, suitable for non-viral gene therapy. At the onset of this thesis, studies had reported conflicting results on the efficiency of chitosan-based gene delivery systems. Therefore, structure-property relationships of chitosans as non-viral gene delivery systems <i>in vitro</i> and after lung administration <i>in vivo</i> were established for the first time.</p><p>Polymer-pDNA complexes (polyplexes) based on conventional high molecular weight chitosans transfected cells <i>in vitro</i> and after lung administration <i>in vivo</i>. The chitosan polyplexes were, in contrast to polyplexes formed with the "golden standard" polymer polyethylenimine (PEI), essentially non-toxic at escalating doses. However, a very high physical stability of the chitosan-pDNA complexes together with a low buffering capacity of chitosan at the slightly acidic endo/lysosomal pH resulted in a slow onset of the gene expression and also in a lower efficiency of gene expression compared to PEI polyplexes. A slow and biodegradation-dependent release of pDNA from the chitosan polyplexes was concluded to be a rate limiting step for the efficiency of high molecular weight chitosan. The optimized polyplexes of high molecular weight chitosan (around 1,000 monomer units) showed aggregated shapes and gave increased viscosity at concentrations used for <i>in vivo</i> gene delivery. To improve the pharmaceutical properties and the delivery properties of chitosan polyplexes, low molecular weight chitosans were studied. Chitosans of around 18 monomer units retained the ability to protect pDNA against DNase degradation, but were more easily dissociated than those of higher molecular weight and had an efficiency comparable to that of PEI <i>in vitro</i> and <i>in vivo</i>. The pharmaceutical advantages of low molecular weight chitosan polyplexes compared to higher molecular weights are that there is less aggregation and no increased viscosity at the concentrations used for <i>in vivo</i> gene delivery. Coupling of an oligosaccharide targeting ligand to chitosan further increased the efficiency of some oligomer polyplexes. In conclusion, biocompatible chitosan is an interesting alternative to other non-viral gene delivery systems such as PEI.</p>
33

Chitosan Polyplexes as Non-Viral Gene Delivery Systems : Structure-Property Relationships and In Vivo Efficiency

Köping-Höggård, Magnus January 2003 (has links)
The subject of this thesis was to develop and optimize delivery systems for plasmid DNA (pDNA) based on biocompatible polymers, in particular chitosan, suitable for non-viral gene therapy. At the onset of this thesis, studies had reported conflicting results on the efficiency of chitosan-based gene delivery systems. Therefore, structure-property relationships of chitosans as non-viral gene delivery systems in vitro and after lung administration in vivo were established for the first time. Polymer-pDNA complexes (polyplexes) based on conventional high molecular weight chitosans transfected cells in vitro and after lung administration in vivo. The chitosan polyplexes were, in contrast to polyplexes formed with the "golden standard" polymer polyethylenimine (PEI), essentially non-toxic at escalating doses. However, a very high physical stability of the chitosan-pDNA complexes together with a low buffering capacity of chitosan at the slightly acidic endo/lysosomal pH resulted in a slow onset of the gene expression and also in a lower efficiency of gene expression compared to PEI polyplexes. A slow and biodegradation-dependent release of pDNA from the chitosan polyplexes was concluded to be a rate limiting step for the efficiency of high molecular weight chitosan. The optimized polyplexes of high molecular weight chitosan (around 1,000 monomer units) showed aggregated shapes and gave increased viscosity at concentrations used for in vivo gene delivery. To improve the pharmaceutical properties and the delivery properties of chitosan polyplexes, low molecular weight chitosans were studied. Chitosans of around 18 monomer units retained the ability to protect pDNA against DNase degradation, but were more easily dissociated than those of higher molecular weight and had an efficiency comparable to that of PEI in vitro and in vivo. The pharmaceutical advantages of low molecular weight chitosan polyplexes compared to higher molecular weights are that there is less aggregation and no increased viscosity at the concentrations used for in vivo gene delivery. Coupling of an oligosaccharide targeting ligand to chitosan further increased the efficiency of some oligomer polyplexes. In conclusion, biocompatible chitosan is an interesting alternative to other non-viral gene delivery systems such as PEI.
34

Evaluation Of The Efficacy Of DNA Vaccines For Japanese Encephalitis In A Murine Intracerebral Japanese Encephalitis Virus Challenge Model

Ashok, M S 10 1900 (has links)
Japanese encephalitis virus (JEV), a member of the family flaviviridae, is one of the most important pathogens of the developing countries, causing high mortality and morbidity amongst children. The present study is aimed at the development of a DNA vaccine for Japanese Encephalitis (JE). As a first step towards developing a DNA vaccine for JE, an eukaryotic expression plasmid encoding the envelope (E) glycoprotein of Japanese Encephalitis Virus (pCMXENV) was constructed. This plasmid expresses the E protein intracellularly, when transfected into Vero cells in culture. Several independent immunization and intracerebral (i.e.) JEV challenge experiments were carried out and the results indicate that 51% and 59% of the mice are protected from lethal i.e. JEV challenge, when immunized with pCMXENV via intramuscular (i.m.) and intranasal (i.n.) routes respectively. JEV-specific antibodies were not detected in pCMXENV-immunized mice either before or after challenge. JEV-specific T cells were observed in mice immunized with pCMXENV, which increased significantly after JEV challenge indicating the presence of vaccination-induced memory T cells. Enhanced production of interferon-y (EFN-y) and complete absence of interleukin-4 (IL-4) in splenocytes of pCMXENV-immunized mice on restimulation with JEV antigens in vitro indicated that the protection is likely to be mediated by T helper (Th) lymphocytes of the Thl sub type. These results demonstrated that immunization with a plasmid DNA expressing intracellular form of JEV E protein confers significant protection against i.e. JEV challenge even in the absence of detectable antiviral antibodies. We then examined the potency of JEV DNA vaccines as well as that of the inactivated mouse brain derived BIKEN vaccine in the i.e. challenge model. The results indicate that all the mice immunized with BIKEN JE vaccine were protected against i.e. JEV challenge while 50% protection was observed in case of mice immunized with pJME or pJNSl and 38% protection was observed in pCMXENV-immunized mice. Immunization with both pJME and pJNSl resulted in 66% protection. These results indicate that the BIKEN JE vaccine confers better protection against i.e. JEV challenge than DNA vaccines. The fact that the BIKEN vaccine conferred better protection against i.e. JEV challenge than DNA vaccines indicated that the i.e. JEV challenge model can be exploited further to examine the potency of different DNA vaccine constructs. Towards this goal, we constructed plasmids that encode secretory or nonsecretory forms of JEV E protein and examined their potency in the i.e. JEV challenge model. Our results indicate that i.m. immunization of mice with plasmid encoding secretory form of JEV E protein confers higher level (75%-80%) protection than those encoding nonsecretory forms. Cytokine analysis of splenocytes isolated from DNA immunized mice after stimulation in vitro with JEV revealed that immunization with plasmid encoding secretory form of JEV E protein induces both Thl and Th2 responses while those encoding nonsecretory forms induce only Thl type of response. Thus, synthesis of secretory form of JEV E protein results in an altered immune response leading better protection against i.e. JEV challenge. Based on our studies, we propose that both cellular and humoral immune responses play a key role in protective immunity against i.e. JEV challenge and DNA vaccines that can induce higher levels of neutralizing antibodies will be as efficient as the BIKEN vaccine in conferring protection against i.e. JEV challenge.
35

Development and evaluation of an imidazole-modified chitosan for nucleic acid and contrast agent delivery

Ghosn, Bilal 13 June 2011 (has links)
Over the past several decades, gene therapy technologies have been developed for a diverse number of applications ranging from DNA-based vaccines to gene silencing with RNAi. While all are powerful tools, a common limitation for these technologies is the need for effective and safe delivery to target sites within the body. Such delivery vectors are necessary for retention of bioactivity and stability, while also providing a method of cellular and tissue uptake and distribution, which may require endosomal escape. Although, viral and lipid-based technologies have shown promise as nucleic acid delivery vectors, both have inherent issues such as cytoxicity, oncogenicity, and immunogenicity. Thus, the development of polymer-based non-viral vectors has been an area of great focus over the past decade. While many polymeric vectors have been developed for plasmid DNA (pDNA) delivery, very few have shown effective delivery of short interfering RNA (siRNA), a powerful tool for gene silencing via the RNA interference mechanism. Furthermore, very few prospective delivery vectors have shown versatility for the administration of siRNA through multiple routes of administration. The overall goal of this research was to develop a biocompatible non-viral delivery system for the delivery of plasmid DNA, siRNA, and contrast agents through the modification of the natural biopolymer chitosan. We have synthesized an imidazole modified chitosan (chitosan-IAA) by conjugation of imidazole acetic acid to chitosan. Extensive evaluation and characterization of the modified polymer demonstrates enhanced solubility and buffering capacity within the physiological and endosomal pHs, thus providing enhanced endosomal escape by exploiting the "proton sponge" effect. We have demonstrated effective in vitro gene expression and gene silencing with chitosan-IAA mediated delivery of pDNA and siRNA, respectively. Furthermore, we have demonstrated in vivo gene silencing by delivery of siRNA through both intranasal and intravenous routes of delivery with chitosan-IAA/siRNA nanocomplexes. We have also demonstrated delivery of contrast agents up to 45 nm in size through mucosal tissue following treatment with chitosan and no contrast agent modification in both human and animal tissue. In conclusion, we have successfully developed a versatile and highly effective delivery vector for both nucleic acids and contrast agents. / text
36

Desenvolvimento e avaliação de adsorventes para purificação de DNA plasmidial por meio de cromatografia baseada em ligantes de arginina. / Development and evaluation of adsorbents for the purification of plasmid DNA by chromatography based on arginine ligands.

Sara Isabel Borges Cardoso 24 May 2018 (has links)
O uso de DNA plasmidial (pDNA) visando a aplicações terapêuticas tem aumentado nos últimos anos. A cromatografia aparece como a técnica de purificação mais comum para obtenção de amostras de pDNA com o elevado grau de pureza exigido. Porém, as resinas cromatográficas disponíveis apresentam ainda uma série de desafios, nomeadamente no desenvolvimento de ligantes específicos e matrizes capazes de acomodar este tipo de molécula. Relativamente à apuração de novos ligantes, alguns estudos têm mostrado o potencial do aminoácido arginina para estabelecer interações específicas e preferenciais com o pDNA. Por outro lado, resinas monolíticas surgem como suportes interessantes devido às suas excelentes propriedades de transferência de massa e altas capacidades de adsorção. Neste estudo, diferentes ligantes baseados em arginina (arginina, di-arginina e tri-arginina) foram imobilizados em resinas de agarose previamente ativadas. Um primeiro estudo de adsorção em batelada foi realizado a fim de avaliar e compreender os mecanismos envolvidos no processo de adsorção dos ácidos nucleicos pDNA e RNA em resina com o aminoácido arginina. Na sequência, apresentamos uma proposta inovadora para o uso de ligantes de arginina em resinas de agarose, em um único passo de purificação em modo negativo a seguir ao passo de concentração por isopropanol. A capacidade da resina para o pDNA foi substancialmente maior do que a obtida para o mesmo tipo de resina no modo positivo, com notória vantagem de capacidade no uso de di-arginina face a arginina com rendimentos próximos de 100% do plasmídeo carregado. Os ligantes di-arginina e tri-arginina foram também imobilizados em resinas monolíticas. Em comparação com o aminoácido arginina, a imobilização dos homopeptídeos nas resinas monolíticas levou ao aumento da capacidade de adsorção (cerca de 2,5 vezes superior) e especicificidade de interações, mostrando-se como uma estratégia promissora para processos de purificação de pDNA. / The use of plasmid DNA (pDNA) for therapeutic applications has increased in recent years. Chromatography appears as the most common purification technique to obtain samples of pDNA with the high degree of purity required. However, the available chromatographic resins still present a series of challenges, namely in the development of specific ligands and matrices capable of accommodating this type of molecule. Regarding the determination of new ligands, several studies have shown the potential of the arginine amino acid to establish specific and preferential interactions with the pDNA. On the other hand, monolithic resins appear as interesting approaches due to their excellent mass transfer properties and high adsorption capacities. In this study, different arginine based ligands (arginine and di-arginine) were firstly immobilized on activated agarose resins. The first part of the work describes the adsorption equilibrium of plasmid DNA adsorption process, as well as the interaction with its main impurity (RNA) on arginine supports in a batch format, in order to compare and gather crucial information about adsorption mechanisms involved in this type of affinity system. Then, a new use for chromatographic bead matrixes based on arginine ligands was proposed, working as an adsorption matrix pDNA purification in negative mode after isopropanol concentration of the sample. The arginine based supports capacity for pDNA under negative mode for pDNA was substantially higher than that obtained with the same type of resin in the conventional positive mode, with a notable advantage of using di-arginine with recovery yields near 100%. The homopeptides (di-arginine and tri-arginine) were also immobilized on functionalized monolithic resins (BIA Separations, Slovenia). Effectively, the immobilization of the arginine homopeptides made the monolithic resins more functional compared to the (mono)arginine based resin, exhibiting greater binding capacities (around 2,5 times higher) and interaction intensities, proving to be a promising strategy for purification processes of pDNA.
37

Desenvolvimento de nanopartículas metal-proteína para a entrega de DNA em estudos de terapia e vacinação gênicas. / Development of metal-protein nanoparticles for DNA delivery in gene therapy and vaccination studies.

Matheus Mlot Palma 08 May 2017 (has links)
Um problema recorrente no desenvolvimento de vacinas de DNA e terapia gênica utilizando vetores não virais é a baixa eficiência de transfecção gênica. Isso ocorre devido às diversas barreiras físicas, enzimáticas e difusionais que o DNA precisa superar para chegar ao núcleo das células. Neste trabalho tem-se por objetivo o desenvolvimento de novos vetores não virais de entrega gênica, formados por DNA plasmidial (pDNA), proteínas (protamina ou T-Rp3) e nanopartículas de ouro (NPAu) na forma de complexos ternários. Para tal, NPAu\'s foram sintetizadas por redução com citrato de sódio, apresentando diâmetros entre 20,3 e 57,3 nm e potencial zeta entre -69,0 e +43,3 mV, dependendo das condições de síntese, a saber, das quantidades de citrato de sódio adicionadas e da ordem de adição dos reagentes. Em seguida, vetores compostos por pDNA-protamina/T-Rp3-NPAu foram formados, transfectados em células HeLa cultivadas in vitro, e a atividade da enzima repórter luciferase foi medida. Deste modo, a partir de variações em proporção mássica e tamanho de nanopartículas, foi possível obter complexos utilizando protamina e ouro com uma eficiência de transfecção 33 vezes melhor do que transfecções utilizando apenas protamina. Por outro lado, complexos contendo T-Rp3 e ouro se mostraram ainda mais eficazes na entrega, apresentando níveis de transfecção próximos ao do reagente comercial Lipofectamina. Ensaios de transfecção utilizando a droga nocodazol indicaram a importância dos microtúbulos no mecanismo de entrega gênica, e ensaios com a droga cloroquina evidenciaram que as nanopartículas de ouro atuam de maneira diferenciada no escape endossomal dos vetores não virais utilizados. Visando relacionar características físico-químicas com a eficiência de transfecção, alguns destes complexos foram caracterizados por espalhamento dinâmico de luz, em que complexos com protamina apresentaram tamanhos entre 116 e 363 nm e complexos com T-Rp3 apresentaram entre 135 e 307 nm e potenciais zeta entre +7,3 e +22,5 mV e +10,6 e +27,2 mV, respectivamente, dependendo das características das NPAu\'s. / A recurrent problem in the development of DNA vaccines and gene therapy using non-viral vectors is the low efficiency of transfection. That is due to the many physical, enzymatic and diffusional barriers that DNA must overcome to reach the cell nucleus. This work aims to develop novel non-viral vectors based on plasmid DNA (pDNA), proteins (protamine or recombinant T-Rp3) and gold nanoparticles (AuNP) as ternary complexes. For such, AuNP\'s were first synthesized via sodium citrate reduction, with diameters varying from 20,3 to 57,3 nm and zeta potentials between -69,0 and +43,3 mV, depending on synthesis conditions, changing the quantities of sodium citrate added and the order of addition of reagents. Vectors formed by pDNA-protamine/T-Rp3-AuNP were then formed, transfected and luciferase activity was measured. Thus, from variations on mass ratios and gold nanoparticle sizes, it was possible to obtain complexes with protamine and gold with a transfection efficiency 33 times higher than analog complexes using only protamine. Also, complexes containing T-Rp3 and gold showed an even higher delivery efficiency, with transfection efficiency close to Lipofectamine. Assays using nocodazole indicated the importance of microtubule in the gene delivery process and, whereas assays with chloroquine showed that gold nanoparticles act in a different way over endossomal escape of used non-viral vectors. Finally, some of these complexes were characterized with dynamic light scattering. Complexes with protamine were within the size ragne of 116 to 363 nm and complexes with T-Rp3 were within the size range of 135 to 307 nm. The zeta potential varied from +7,3 to +22,5 mV and from +10,6 to +27,2 mV, respectively, depending on the gold nanoparticles used.
38

Studies On Polypyrimidine Tract Binding Protein : Identification Of Interacting Partners

Ramesh, V 01 1900 (has links)
PTB (HnRNP I) is a multifunctional RNA binding protein which participates in a variety of RNA metabolic processes put together called as post transcriptional gene regulation. It interacts with shuttling hnRNPs L, K and E2 of the spliceosomal machinery and also with other RNA binding proteins like PSF, Raver1 and Raver2, which assists PTB in splicing. Based on the complexity of these processes and multifunctional nature of PTB, we hypothesized that; it might interact with various additional proteins not identified till date. Keeping this objective in mind, we set out to screen the custom made 18 day old mouse testes cDNA library in pGAD10 vector available in the laboratory, to hunt for novel interacting partners of PTB using the Clontech’s Matchmaker Gal4 yeast two hybrid system III. PTB1, the prototype of PTB was chosen and the above mentioned cDNA library was screened for novel PTB interacting partners. Twenty five large scale library transformations (spanning 8*106 independent clones) were performed and 99 putatives were obtained. By re-transformation of these library plasmids with bait construct to check for the interaction phenotype and eliminating bait independent activation of reporter genes and elimination of known false positives, only 5 clones were consistent with the interaction phenotype. All these library plasmids were sequenced with vector specific primers, ORF was identified and BLAST analysis for the identification of insert was done. Two of these clones encoded the partial CDS of mouse Protein Inhibitor of Activated STAT3-PIAS3. One of these encoded the partial CDS of mouse TOLL Interacting Protein-TOLLIP. The other two encoded the partial CDS of mouse importin-α and mouse hnRNP K, both of which were already known interacting partners of PTB. GST pull down assay and mammalian matchmaker co-immunoprecipitation was used for confirming the in vitro one to one physical interaction between PTB and these newly identified protein partners. Indirect Immunofloresence was used for demonstrating the co-localization of PTB and PIAS3 in Gc1Spg mouse spermatogonial cell line. The fact that PIAS3 an E3 SUMO ligase was picked up as an interacting partner of PTB was interesting and we hypothesized that PTB might be a sumoylation substrate. Towards this, we first resorted to the prediction of sumoylation consensus motif by using SUMOPLOT. PTB indeed was found to have sumoylation consensus sites. Subsequently, in vivo sumoylation of PTB was demonstrated, where in over expression of donor protein [SUMO-1] and acceptor protein [PTB] in RAG-1 mouse kidney cell line had resulted in the identification of an approximately 67 kDa slow moving SUMO modified myc tagged PTB band apart from the bulk of unmodified 57 kDa myc-PTB. This confirmed the fact that PTB is SUMO modified only at a single consensus target site in vivo and attempts are made to map this site of modification. SUMOylation regulates diverse biological processes in vivo ranging from nucleo- cytoplasmic shuttling, alteration of protein-protein interaction, DNA protein interaction etc. PTB shuttles rapidly between the nucleus and cytoplasm in a transcription sensitive manner and the translocation of PTB to the cytoplasm, happens under the conditions of cell stress, viral infections, apoptosis and exposure of cells to genotoxic agents like doxorubicin. Phosphorylation of PTB at Ser-16 residue has been shown to modulate the nucleo-cytoplasmic shuttling of PTB, albeit shuttling can also occur irrespective of this modification. Interaction of PTB with an E3 SUMO ligase-PIAS3 and the fact that it is SUMOylated in vivo, we hypothesize that K-47 residue present in the NLS/NES might be the most probable site of this SUMO modification and SUMOylation of PTB by PIAS3 might regulate the nucleo-cytoplasmic shuttling of PTB.
39

Lipid Modified Polymers for Transfection of Human CRL Fibroblasts, and for siRNA Mediated MDR Reversal in Melanoma Cancer Therapy

Abbasi Dezfouli, Meysam Unknown Date
No description available.
40

Lipid Modified Polymers for Transfection of Human CRL Fibroblasts, and for siRNA Mediated MDR Reversal in Melanoma Cancer Therapy

Abbasi Dezfouli, Meysam 11 1900 (has links)
Gene delivery for therapeutic purposes is quickly emerging as the best potential treatment option for inherited genetic diseases and cancer. Viral gene carriers have been the choice for this purpose due to their high efficiency, but harmful immunogenic and oncogenic host reactions have limited their in vivo use. Cationic polymers provide a safe alternative to viral carriers as they can be engineered to reduce immunogenic and toxic responses and serve therapeutic purposes in the body. Due to their strong positive charge, they are able to compact the negatively charged nucleotides to small nano-sized particles appropriate for cellular uptake. Additionally, they efficiently encapsulate the highly sensitive nucleotides, and protect them against degradation by the nucleases present at the physiological milieu. In this thesis work, I have used a novel approach for gene delivery by combining the critical properties of a cationic polymer (i.e., nucleotide condensing ability) with that of a fatty acid (i.e., lipid membrane compatibility). The resulting lipid modified polymer increased delivery of our gene of interest into target cells and resulted in increased siRNA delivery for cancer gene therapy. / Biomedical Sciences

Page generated in 0.0313 seconds