• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 454
  • 236
  • 47
  • 45
  • 26
  • 21
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 7
  • 6
  • 6
  • Tagged with
  • 1018
  • 185
  • 143
  • 125
  • 121
  • 112
  • 104
  • 102
  • 99
  • 73
  • 66
  • 62
  • 61
  • 60
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Untersuchungen PEG-basierter thermo-responsiver Polymeroberflächen zur Steuerung der Zelladhäsion / Analysis of PEG-based thermo-responsive polymer surfaces to control cell adhesion

Uhlig, Katja January 2010 (has links)
Moderne Methoden für die Einzelzellanalyse werden dank der fortschreitenden Weiterentwicklung immer sensitiver. Dabei steigen jedoch auch die Anforderungen an das Probenmaterial. Viele Aufbereitungsprotokolle adhärenter Zellen beinhalten eine enzymatische Spaltung der Oberflächenproteine, um die Ablösung vom Zellkultursubstrat zu ermöglichen. Verschiedene Methoden, wie die Patch-Clamp-Technik oder eine auf der Markierung extrazellulärer Domänen von Membranproteinen basierende Durchflusszytometrie können dann nur noch eingeschränkt eingesetzt werden. Daher ist die Etablierung neuer Zellablösemethoden dringend notwendig. In der vorliegenden Arbeit werden erstmals PEG-basierte thermo-responsive Oberflächen erfolgreich für die Zellkultur eingesetzt. Dabei wird das zerstörungsfreie Ablösen verschiedener Zelllinien von den Oberflächen durch Temperatursenkung realisiert. Die Funktionalität der Oberflächen wird durch Variation der Polymerstruktur, sowie der Konzentration der Beschichtungslösung, durch Beschichtung der Oberflächen mit einem zelladhäsionsfördernden Protein (Fibronektin) und durch Adsorption zelladhäsionsvermittelnder Peptide (RGD) optimiert. Um den Zellablösungsprozess detaillierter zu untersuchen, wird hier zum ersten Mal der direkte Zellkontakt mit thermo-responsiven Oberflächen mittels oberflächensensitiver Mikroskopie (TIRAF) sichtbar gemacht. Mit dieser Technik sind die exakte Quantifizierung und die Analyse der Reduktion der Zelladhäsionsfläche während des Abkühlens möglich. Hierbei werden in Abhängigkeit von der Zelllinie Unterschiede im Zellverhalten während des Ablösens festgestellt: Zellen, wie eine Brustkrebszelllinie und eine Ovarzelllinie, die bekanntermaßen stärker mit ihrer Umgebung in Kontakt treten, vergrößern im Verlauf des Beobachtungszeitraumes den Abstand zwischen Zellmembran und Oberfläche, reduzieren jedoch ihre Zell-Substratkontaktfläche kaum. Mausfibroblasten hingegen verkleinern drastisch die Zelladhäsionsfläche. Der Ablösungsprozess wird vermutlich aktiv von den Zellen gesteuert. Diese Annahme wird durch zwei Beobachtungen gestützt: Erstens verläuft die Reduktion der Zelladhäsionsfläche bei Einschränkung des Zellmetabolismus durch eine Temperatursenkung auf 4 °C verzögert. Zweitens hinterlassen die Zellen Spuren, die nach dem Ablösen der Zellen auf den Oberflächen zurückbleiben. Mittels Kombination von TIRAF- und TIRF-Mikroskopie werden die Zelladhäsionsfläche und die Aktinstruktur gleichzeitig beobachtet. Die Verknüpfung beider Methoden stellt eine neue Möglichkeit dar, intrazelluläre Prozesse mit der Zellablösung von thermo-responsiven Oberflächen zu korrelieren. / Modern methods for single-cell analysis are becoming increasingly sensitive. At the same time, requirements for the sample material are on the rise. Today, sample preparation of adherent cells usually includes steps of enzymatic treatment to digest surface proteins thus, inducing cell detachment from culture substrates. This strongly limits the application of different techniques like patch clamp or labelling of extracellular domains of membrane proteins for flow cytometry. Therefore, a new cell detachment method is urgently required. In the present work, new PEG-based thermo-responsive polymers are used for cell culture for the first time. Here, non-destructive detachment of different cell lines from polymer-coated surfaces is realised by controlled temperature reduction. The surface functionality is systematically optimised by varying the concentration of the coating solutions, by artificial surface coating of a cell adhesion-mediating protein (fibronectin) and by co-adsorption of a cell adhesion-mediating peptide (RGD). For detailed analysis of the cell detachment process, TIRF microscopy is used to directly visualise the cell contacts on the thermo-responsive surfaces. Using this technique allows both the quantification and analysis of the reduction of the cell adhesion area during sample cooling. Furthermore, for several cell lines, different behaviours in cell detachment are observed. Cells that have close contact to their substrate like MCF-7 breast cancer cell line and CHO-K1 ovary cells increase the distance between cell membrane and surface, but there is only little decrease of cell-substrate adhesion area. In contrast, L929 fibroblasts reduce the cell adhesion area drastically. Furthermore, the hypothesis that the cell detachment is an active process is shown by lowering the cell metabolism by temperature reduction to 4 °C and by the cell traces that are left behind after rinsing the surfaces. A combination of TIRAF and TIRF enables visualising the cell adhesion area and actin structures. Measuring both parameters simultaneously opens up new possibilities to correlate intracellular and cell detachment processes on thermo-responsive surfaces.
462

Diffusion in Poly(vinyl alcohol) and Polyethylene as Determined by Computational Simulations and Modeling

Karlsson, Gunnar January 2002 (has links)
Poly(vinyl alcohol) and polyethylene polymer systems werebuilt in order to study their transport properties (diffusion).First a verification of the AMBER force field was conducted fora poly(vinyl alcohol) system built from a chain with 145repeating units. NPT-molecular dynamics simulations attemperatures between 400 and 527 K were performed. The resultsof the simulations were compared withpressure-volume-temperature data, solubility parameter, X-rayscattering pattern and data for the characteristic ratio. Thefractional free volume distribution was computed and thediffusion characteristics of water in the polymer werestudied. Further another poly(vinyl alcohol) system, with 600repeating units, was used to study oxygen diffusion in dry andwet poly(vinyl alcohol). In these systems the focus was toinvestigate the oxygen paths relative to the backbone and alsothe effect of water on the diffusion coefficients. Jump mapsand correlation function between the velocity of the oxygen wascalculated. The water has a huge impact on the oxygen diffusionand the preferred paths. A larger molecule (limonene) was studied in a polyethylenematrix consisting of 6000 anisotropic united atoms. A 100 nslong trajectory was recorded and also shortertrajectories atdifferent temperatures, which gave the temperature dependenceof the diffusion coefficients. Correlation functions for thelimonene molecule shows that it rotates and tumbles when movingthru the matrix. The main results from the molecular dynamics simulationsshowed that diffusion of larger molecules are possible and alsothat molecular dynamics simulations can predict plasticizationeffects. A new fast experimental method for determining diffusioncoefficients with non iso thermal thermogravimetry weredeveloped. The advantage is that the experiments only takesminutes instead of days with a small effect on theaccuracy.
463

The influence of Morphology on the Transport and Mechanical Properties of Polyethylene

Neway, Bereket January 2003 (has links)
The sorption/desorption behaviour of n-hexane in high molarmass linear polyethylene (PE) and branched PEs with 0.39 and5.09 hexyl branches per 100 main chain C atoms andcrystallinities between 4 and 82% at 298 K has been studied.Crystal core contents determined by Raman spectroscopy werealways lower than those determined by density measurements. Then-hexane solubilities in the copolymers depended in anon-linear manner on the content of penetrable polymercomponent and were lower for homogeneous copolymers than forheterogeneous copolymers at the same contents of penetrablecomponent. The solubility of hexane in the linear PE sampleswas proportional to the volume fraction of the penetrablepolymer and the solubility was low in comparison with that ofthe branched PE of the same crystallinity. TheCohen-Turnbull-Fujita (CTF) free volume theory was capable ofdescribing the desorption process in the PEs studied. Theconcentration dependence of the thermodynamic diffusivitypredicted by the CTF free volume theory was confirmed by thedata obtained by the differential method, and the differencesbetween the results obtained by the integral and differentialmethods were within the margins of experimental error. Thedependence of the fractional free volume of the penetrablephases on the phase composition suggests that mass transporttakes place from the liquid-like component to the interfacialcomponent and that the penetrant molecules are trapped at theinterfacial sites. The linear PE samples showed a physicallyrealistic trend with a decrease in the geometrical impedancefactor (t) with decreasing degree of crystallinity, whereas theopposite trend was obtained for the copolymers. The decrease int with increasing crystallinity in the copolymers may beexplained by the presence of wide crystal lamellae in the lowcrystallinity samples. A novel melt-extrusion method was used to createcircumferential chain orientation in pipes of crosslinked PE.The microstructure of the pipes was characterized usingdifferential scanning calorimetry (DSC), density measurements,X-ray diffraction, infrared dichroism and contractionmeasurements. The mechanical properties were assessed byuniaxial tensile tests. The maximum degree of circumferentialorientation was obtained at the inner wall of the orientedpipe. The oriented pipe material exhibited a 5-15% higherdegree of crystallinity and a greater crystal thickness thanconventionally crosslinked pipe. The circumferential and axialmoduli of the oriented, crosslinked pipe were greater than thecorresponding moduli of the non-oriented crosslinked pipe. Blends of single-site materials of linear PE andethyl-branched PE were prepared using solution- and melt-mixingmethods. The thermal properties of the blends were studied byDSC and results obtained by the two mixing methods werecompared. Data obtained for heats of melting andcrystallization, melting and crystallization peak temperaturesand melting and crystallization temperature profiles wereessentially the same for the samples obtained by the two mixingmethods. The heat associated with the high temperature meltingpeak of the blend samples obtained by both preparation methodsafter crystallization at 398 K was higher than that of thelinear polyethylene included in the blends, suggesting that apart of the branched polyethylene crystallized at 398 K. <b>Key words:</b>n-Hexane diffusion, polyethylene, free volume,solubility, sorption, desorption, mechanical properties,orientation, thermal properties, blend.
464

Low electrical resistivity carbon nanotube and polyethylene nanocomposites for aerospace and energy exploration applications

January 2012 (has links)
An investigation was conducted towards the development and optimization of low electrical resistivity carbon nanotube (CNT) and thermoplastic composites as potential materials for future wire and cable applications in aerospace and energy exploration. Fundamental properties of the polymer, medium density polyethylene (MDPE), such as crystallinity were studied and improved for composite use. A parallel effort was undertaken on a broad selection of CNT, including single wall, double wall and multi wall carbon nanotubes, and included research of material aspects relevant to composite application and low resistivity such as purity, diameter and chirality. With an emphasis on scalability, manufacturing and purification methods were developed, and a solvent-based composite fabrication method was optimized. CNT MDPE composites were characterized via thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Raman spectroscopy, and multiple routes of electron microscopy. Techniques including annealing and pressure treatments were used to further improve the composites' resulting electrical performance. Enhancement of conductivity was explored via exposure to a focused microwave beam. A novel doping method was developed using antimony pentafluoride (SbF 5 ) to reduce the resistivity of the bulk CNT. Flexible composites, malleable under heat and pressure, were produced with exceptional electrical resistivities reaching as low as 2*10 -6 Ω·m (5*10 5 S/m). A unique gas sensor application utilizing the unique electrical resistivities of the produced CNT-MDPE composites was developed. The materials proved suitable as a low weight and low energy sensing material for dimethyl methylphosphonate (DMMP), a nerve gas simulant.
465

Bio-functionalized peg-maleimide hydrogel for vascularization of transplanted pancreatic islets

Phelps, Edward Allen 08 November 2011 (has links)
Type 1 diabetes affects one in every 400-600 children and adolescents in the US. Standard therapy with exogenous insulin is burdensome, associated with a significant risk of dangerous hypoglycemia, and only partially efficacious in preventing the long term complications of diabetes. Pancreatic islet transplantation has emerged as a promising therapy for type 1 diabetes. However, this cell-based therapy is significantly limited by inadequate islet supply (more than one donor pancreas is needed per recipient), instant blood-mediated inflammatory reaction, and loss of islet viability/function during isolation and following implantation. In particular, inadequate revascularization of transplanted islets results in reduced islet viability, function, and engraftment. Delivery of pro-vascularization factors has been shown to improve vascularization and islet function, but these strategies are hindered by insufficient and/or complex release pharmacokinetics and inadequate delivery matrices as well as technical and safety considerations. We hypothesized that controlled presentation of angiogenic cues within a bioartificial matrix could enhance the vascularization, viability, and function of transplanted islets. The primary objective of this dissertation was to enhance allogenic islet engraftment, survival and function by utilizing synthetic hydrogels as engineered delivery matrices. Polyethylene glycol (PEG)-maleimide hydrogels presenting cell adhesive motifs and vascular endothelial growth factor (VEGF) were designed to support islet activities and promote vascularization in vivo. We analyzed the material properties and cyto-compatibility of these engineered materials, islet engraftment in a transplantation model, and glycemic control in diabetic subjects. The rationale for this project is to establish novel biomaterial strategies for islet delivery that support islet viability and function via the induction of local vascularization.
466

Exploiting fibrin knob:hole interactions for the control of fibrin polymerization

Soon, Allyson Shook Ching 11 November 2011 (has links)
The minimization of blood loss represents a significant clinical need in the arena of surgery, trauma, and emergency response medicine. Fibrinogen is our body's native polymer system activated in response to tissue and vasculature injury, and forms the foundation of the most widely employed surgical sealant and hemostatic agent. Non-covalent knob:hole interactions are central to the assembly of fibrin that leads to network and clot formation. This project exploits these affinity interactions as a strategy to direct fibrin polymerization dynamics and network structure so as to develop a temperature-triggered polymerizing fibrin mixture for surgical applications. Short peptides modeled after fibrin knob sequences have been shown to alter fibrin matrix structure by competing with native fibrin knobs for binding to the available holes on fibrinogen and fibrin. The fusion of such knob peptides to a non-native component should facilitate binding of the fused component to fibrinogen/fibrin, and may permit the concomitant modification of the fibrin matrix. We examined this hypothesis in a three-step approach involving (a) analyzing the ability of tetrapeptide knob sequences to confer fibrin(ogen) affinity on a non-fibrin protein, (b) investigating the effect of knob display architecture on fibrin(ogen) structure, and (c) designing a temperature-responsive knob-displaying construct to modulate fibrin(ogen) affinity at different temperature regimes, thus altering fibrin(ogen) structure.
467

Control and stabilization of morphologies in reactively compatibilized Polyamide 6 / High Density Polyethylene blends

Argoud, Alexandra 02 December 2011 (has links) (PDF)
This study deals with reactively compatibilized Polyamide 6 / High Density Polyethylene blends. More precisely, it focuses on the relationship between (1) the formulation, the processing parameters in corotating twin screw extrusion and (2) the morphologies and the microstructures of blends. Multi-scale morphologies were observed by Scanning and Transmission Electron Microscopy. At the micron scale, the following morphologies were developed: nodular dispersions, stretched nodules and co-continuous morphology. As the processing conditions did not influence the types of morphology, the different morphological regions were reported in ternary diagrams. In the case of compatibilized blends, two mechanisms for morphology development have been proposed: (1) the compatibilization reaction, being very fast, leads to the formation of nano-dispersions by interfacial instabilities and (2) the standard break-up/coalescence mechanism of domains poor in copolymer could lead to the formation of morphologies up to the micron scale. Both the evolution of the largest size as a function of the composition and the distribution of sizes were modeled using percolation concepts. The stability of the morphologies was then studied either during static annealing or controlled shear or in a second step processing. The copolymer formed at the interface allows stabilizing the size of the morphologies. Finally, crystallization at lower temperature was observed by Differential Scanning Calorimetry when the polymers are confined in submicron domains.
468

Rapid rotational foam molding of polyethylene integral-skin foamed core moldings

Christian, Kimberly Anne 01 June 2009 (has links)
This thesis focuses on the design, development, and evolution of a novel patent-pending plastic processing technology entitled “Rapid Rotational Foam Molding” with special emphasis on the processing of polyethylene (PE) integral-skin foamed core moldings. Rapid Rotational Foam Molding is a technology deliberately designed to address the intrinsic disadvantage of conventional rotational foam molding, i.e., its very long cycle times. In this context, a physical system that exploits the positive synergistic effects of innovatively combining extrusion melt compounding and rotational foam molding was designed and built. The fundamental processing steps of this system comprise (i) rotationally molding a non-foamable PE powder in a lab-scale oven while, (ii) simultaneously melt compounding and foaming a pre-dry blended foamable PE and chemical blowing agent (CBA) formulation in an on-line lab-scale extruder, and then (iii) filling the newly created foaming material into the non-chilled hollow article thereby created in the mold through a special interface. Two varieties of PE resins ranging from linear low density PE (LLDPE) to high density PE (HDPE) were selected for experimentation with melt flow rates (MFR) ranging from 2.0 to 3.6 g/10min. The implemented CBA was Celogen OT. The materials were characterized using thermal analysis techniques such as differential scanning calorimetery (DSC) and thermogravimetric analysis (TGA) to ensure their correct operating temperatures ranges. Scanning electron microscopy (SEM) was utilized for characterizing the quality of the foam samples and achieved skin-foam interface for the final moldings. Improvements to the achieved molding quality were accomplished through various system and process modifications described throughout this research work.
469

Renewable Thermoplastic Composites for Environmentally Friendly and Sustainable Applications

Park, Sungho 15 January 2013 (has links)
Thermoplastic composites using natural fibres are studied intensively and widely used in applications including automotive, packaging, consumer goods and construction. Good balance of mechanical properties, processability and low cost are great advantages of these materials on top of the environmental benefits. Recently, there have been various efforts to amplify the positive effects on the environment by replacing the conventional polymers by bio-derived renewable polymers in the composites. Recent studies conducted from our research group showed competitiveness of plant fibre-thermoplastic composites. Implementing the promising results and experience, a new composite design using renewable polyethylene as the matrix material was studied. This polyethylene is a renewable thermoplastic that was derived from sugar cane ethanol. The objectives of this study were to employ renewable high density polyethylene (HDPE) into composites using wheat straw and flax fibre to extend the range of properties of the HDPE while keeping the amount of renewable content to nearly 100%. The chemical resistance of these materials has not been reported before and it was investigated here by measuring and comparing the properties before and after accelerated chemical ageing. Both wheat straw and flax fibre had two different grades in size. Each of them was compounded with HDPE and additives (antioxidant and coupling agent) in a co-rotating twin screw extruder. The concentrations of fibres were varied from 0 to 30 wt-%. Then, injection molded samples were prepared for measurement of properties: tensile, flexural, impact tests. The effects of reinforcing fibre size were studied first. Both length and aspect ratio were considered. For both types of fibre composites, a general trend was observed. There was no clear evidence of improvements in flexural (strength and modulus) and tensile (strength, percentage elongation at break) properties with respect to the change in fibre size. However, impact (IZOD impact strength, Gardner impact failure energy) properties showed some improvements. This result was due to no substantial difference in size and aspect ratios in post-processed fibres that were actually residing in the matrix. There were remarkable improvements in flexural strength and modulus when the fibre content increased. However, minor decreases in tensile properties were observed. Furthermore, the impact properties were very sensitive to the concentration of fibres. As the fibre concentration went up, there were significant decreases in both IZOD impact strength and Gardner impact failure energy. Chemical resistance of these composites was studied by exposing them in six different chemical solutions (hydrochloric acid, acetic acid, sodium hydroxide, ethyl alcohol, industrial detergent, water) for up to thirty days. The increase in weight and leaching behaviour was observed. As the fibre content increased within the composites, the weight gain was more rapid during chemical ageing. Because there were more fibres exposed on the surface after chemical ageing, it is likely that they contributed to the higher flux of liquids (used for chemical ageing) inside the sample. Among the physical properties, tensile properties were most susceptible to the chemical ageing. One possible reason could be due to the exposed surface area to volume ratio, which was the highest in tensile bars and therefore faster mass transfer taking place into the matrix per volume. Finally, morphological study using scanned electron spectroscopy (SEM) revealed the damage on the surface when exposed to the chemicals. The fibres on the surface had been leached out in the sodium hydroxide solution leaving empty spaces. The fractured surface was also monitored via SEM. Though there was not enough evidence of strong interfacial interactions between the fibre and the polymer, good dispersions were observed.
470

A new composite material consisting of flax fibers, recycled tire rubber and thermoplastic

Fung, Jimmy Chi-Ming 19 November 2009
Canadian grown oilseed flax is known for its oils that are used for industrial products. The flax fiber may also have a use as a potential replacement for synthetic fibers as reinforcement in plastic composites. It can also be utilized as a cost effective and environmentally acceptable supplement in the biodegradable composites. Tire rubber is a complex material which does not decompose naturally. As a result, many researchers have been trying to develop new applications for recycling scrap tires. The conversion of flax straw and scrap tire into a profitable product may benefit the agricultural economy, tire recycling market, and our environment. The main goal of this research was to develop a biocomposite material containing recycled ground tire rubber (GTR), untreated flax fiber, and linear low-density polyethylene (LLDPE).<p> In this study, the new biocomposite material was successfully prepared from flax fiber/shives, GTR, and LLDPE through extrusion and compression molding processes. The composites were compounded through a single-screw extruder. Then the pelletized extrudates were hot pressed into the final biocomposites. The properties of the flax fiber-GTR-LLDPE biocomposites were defined by using tearing, tensile, water absorption, hardness, and differential scanning calorimetry (DSC) tests. The effects of the independent variables (flax fiber content and GTR-LLDPE ratio) on each of the dependent variables (tear strength from tearing test, tensile yield strength and Youngs modulus from tensile test, and weight increase from water absorption test) were modeled. The properties of the composites can be predicted by using the mathematical model with known flax fiber content and GTR-LLDPE ratio.<p> The tensile yield strength and stiffness of the biocomposite were improved with the addition of flax fiber. The optimal composition of the biocomposite material (with strongest tensile yield strength or highest Youngs modulus) was calculated by using the model equations. The maximum yield strength was found to exist for a flax fiber content of 10.7% in weight and GTR-LLDPE ratio of one. The largest Youngs modulus was found for a fiber content of 17.7% by weight and the same GTR-LLDPE ratio. Both of these fiber contents were less than the amount that would give a composite with a 2% weight increase in water absorption.

Page generated in 0.6307 seconds