• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 401
  • 164
  • 77
  • 70
  • 47
  • 46
  • 15
  • 14
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 995
  • 339
  • 174
  • 165
  • 151
  • 149
  • 143
  • 116
  • 114
  • 106
  • 103
  • 91
  • 87
  • 86
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Design and evaluation of a g <inf>m</inf>-RC bandpass filter using a 42 GHz linear OTA incorporating heterojunction bipolar transistors

Sun, Shao-Chi January 1994 (has links)
No description available.
262

A small-signal modeling of GaAs FET and broad band amplifier design

Tan, Tiow Heng January 1991 (has links)
No description available.
263

Load Modulation Through Varactor Tunable Matching Networks

Welton, Sean P. 27 July 2011 (has links)
No description available.
264

A Vibrating Reed Type Electrometer-Amplifier for the Measurement of Direct Currents

Glenny, Donald 05 1900 (has links)
N/A / Thesis / Master of Arts (MA)
265

Design and Fabrication of InGaAsP Quantum-Well Semiconductor Optical Amplifiers for Integration with Silicon Photonics

Vukovic, Matthew January 2020 (has links)
Silicon photonics provides an environmentally sustainable pathway to a more robust data infrastructure. To compensate for optical power losses, methods of amplification are required; specifically, amplifiers that can fit in a small footprint for applications in data centres. Semiconductor optical amplifiers (SOA) provide such a solution, and can be fabricated using III-V ternary or quaternary materials to enhance optical signals through a device on the scale of most CMOS components. This research sought to fabricate an InGaAsP multiple quantum well semiconductor optical amplifier using the facilities in McMaster University’s Centre for Emerging Device Technologies (CEDT). A ridge waveguide laser diode was first fabricated and validated, then altered by applying an anti-reflective coating to the waveguide facets to suppress reflections in the Fabry-Perot cavity in an attempt to create an SOA. The design process and fabrication methodology are explained, including an analysis of failed methodologies. Characterization measurement techniques are then detailed for the fabricated devices. Finally, the performance of the devices is presented, and future steps are suggested for improving the fabrication process to enhance device characteristics. The fabricated laser diodes produced an output power in excess of 20 mW at a peak wavelength near 1580 nm. The subsequently coated devices proved difficult to measure, displaying a maximum of 0 dB or 1 dB gain when checked for amplification, with suspicions that output loss (and therefore gain) was higher than measured. The coated devices exhibited gain saturation between -10 and 0 dBm of input power. Owing to the shapes of their characteristic curves, it was determined that SOA devices were successfully created. / Thesis / Master of Applied Science (MASc)
266

Design of Energy Efficient Power Amplifier for 4G User Terminals

Hussaini, Abubakar S., Abd-Alhameed, Raed, Rodriguez, Jonathan 12 December 2010 (has links)
yes / This paper describes the characterization and design of energy efficient user terminal transceiver power amplifier. To reduce the design of bulky external circuitry, the load modulation technique is employed. The design core is based on the combination of Class B and Class C that includes quarter wavelength transformer at the output to perform the load modulation. The handset transceiver for this power amplifier is designed to operate over the frequency range of 3.4GHz to 3.6GHz mobile WiMAX band. The performances of the load modulation amplifier are compared with conventional Class B amplifier. The results of 30dBm output power and 53% power added efficiency are achieved.
267

Ultra-Compact mm-Wave Monolithic IC Doherty Power Amplifier for Mobile Handsets

Sajedin, M., Elfergani, Issa T., Rodriguez, Jonathan, Abd-Alhameed, Raed, Fernandez-Barciela, M., Violas, M. 07 September 2021 (has links)
Yes / This work develops a novel dynamic load modulation Power Amplifier (PA) circuity that can provide an optimum compromise between linearity and efficiency while covering multiple cellular frequency bands. Exploiting monolithic microwave integrated circuits (MMIC) technology, a fully integrated 1W Doherty PA architecture is proposed based on 0.1 µm AlGaAs/InGaAs Depletion- Mode (D-Mode) technology provided by the WIN Semiconductors foundry. The proposed wideband DPA incorporates the harmonic tuning Class-J mode of operation, which aims to engineer the voltage waveform via second harmonic capacitive load termination. Moreover, the applied post-matching technique not only reduces the impedance transformation ratio of the conventional DPA, but also restores its proper load modulation. The simulation results indicate that the monolithic drive load modulation PA at 4 V operation voltage delivers 44% PAE at the maximum output power of 30 dBm at the 1 dB compression point, and 34% power-added efficiency (PAE) at 6 dB power back-off (PBO). A power gain flatness of around 14 ± 0.5 dB was achieved over the frequency band of 23 GHz to 27 GHz. The compact MMIC load modulation technique developed for the 5G mobile handset occupies the die area of 3.2. / This research was funded by the European Regional Development Fund (FEDER), through COMPETE 2020, POR ALGARVE 2020, Fundação para a Ciência e a Tecnologia (FCT) under i-Five Project (POCI-01-0145-FEDER-030500). This work is also part of the POSITION-II project funded by the ECSEL joint Undertaking under grant number Ecsel-345 7831132-Postitio-II-2017-IA. This work is supported by FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/50008/2020-UIDP/50008/2020. The authors would like to thank the WIN Semiconductors foundry for providing the MMIC GaAs pHEMT PDKs and technical support. This work is supported by the Project TEC2017-88242-C3-2-R- Spanish Ministerio de Ciencia, Innovación e Universidades and EU-FEDER funding.
268

Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG / Design och utvärdering av en kapacitivt kopplad sensorutläsningskrets, mot kontaktlös EKG och EEG

Svärd, Daniel January 2010 (has links)
<p>In modern medicine, the measurement of electrophysiological signals play a key role in health monitoring and diagnostics. Electrical activity originating from our nerve and muscle cells conveys real-time information about our current health state. The two most common and actively used techniques for measuring such signals are electrocardiography (ECG) and electroencephalography (EEG).</p><p>These signals are very weak, reaching from a few millivolts down to tens of microvolts in amplitude, and have the majority of the power located at very low frequencies, from below 1 Hz up to 40 Hz. These characteristics sets very tough requirements on the electrical circuit designs used to measure them. Usually, measurement is performed by attaching electrodes with direct contact to the skin using an adhesive, conductive gel to fixate them. This method requires a clinical environment and is time consuming, tedious and may cause the patient discomfort.</p><p>This thesis investigates another method for such measurements; by using a non-contact, capacitively coupled sensor, many of these shortcomings can be overcome. While this method relieves some problems, it also introduces several design difficulties such as: circuit noise, extremely high input impedance and interference. A capacitively coupled sensor was created using the bottom layer of a printed circuit board (PCB) as a capacitor plate and placing it against the signal source, that acts as the opposite capacitor plate. The PCB solder mask layer and any air in between the two acts as the insulator to create a full capacitor. The signal picked up by this sensor was then amplified by 60 dB with a high input impedance amplifier circuit and further conditioned through filtering.</p><p>Two measurements were made of the same circuit, but with different input impedances; one with 10 MΩ and one with 10 GΩ input impedance. Additional filtering was designed to combat interference from the main power lines at 50 Hz and 150 Hz that was discovered during initial measurements. The circuits were characterized with their transfer functions, and the ability to amplify a very low-level, low frequency input signal. The results of these measurements show that high input impedance is of critical importance for the functionality of the sensor and that an input impedance of 10 GΩ is sufficient to produce a signal-to-noise ratio (SNR) of 9.7 dB after digital filtering with an input signal of 25 μV at 10 Hz.</p>
269

A New Approach For Distributed Amplifier Design

Yilmaz, Ismail Gokhan 01 September 2012 (has links) (PDF)
In this thesis work, a new distributed amplifier topology is discussed and applied to three different cases. The topology is based on dividing the frequency spectrum into channels and amplifying afterwards. The channelized and amplified signals are then combined at the output for broadband amplification. This topology is used in the design of a three channel 0.1-1 GHz amplifier with a gain of 14.5&plusmn / 0.6 dB. The design is fabricated, and then the measured and simulated results are compared. A second 0.1-1 GHz amplifier with 21&plusmn / 1 dB is designed in simulation environment with five channels. This five channel amplifier is fabricated and measured results are compared with the simulated ones. A 1-6 GHz three channel amplifier is also designed with a gain of 10.5&plusmn / 0.5 dB. Application of the proposed topology to three different designs shows promising results for future amplifier designs.
270

Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG / Design och utvärdering av en kapacitivt kopplad sensorutläsningskrets, mot kontaktlös EKG och EEG

Svärd, Daniel January 2010 (has links)
In modern medicine, the measurement of electrophysiological signals play a key role in health monitoring and diagnostics. Electrical activity originating from our nerve and muscle cells conveys real-time information about our current health state. The two most common and actively used techniques for measuring such signals are electrocardiography (ECG) and electroencephalography (EEG). These signals are very weak, reaching from a few millivolts down to tens of microvolts in amplitude, and have the majority of the power located at very low frequencies, from below 1 Hz up to 40 Hz. These characteristics sets very tough requirements on the electrical circuit designs used to measure them. Usually, measurement is performed by attaching electrodes with direct contact to the skin using an adhesive, conductive gel to fixate them. This method requires a clinical environment and is time consuming, tedious and may cause the patient discomfort. This thesis investigates another method for such measurements; by using a non-contact, capacitively coupled sensor, many of these shortcomings can be overcome. While this method relieves some problems, it also introduces several design difficulties such as: circuit noise, extremely high input impedance and interference. A capacitively coupled sensor was created using the bottom layer of a printed circuit board (PCB) as a capacitor plate and placing it against the signal source, that acts as the opposite capacitor plate. The PCB solder mask layer and any air in between the two acts as the insulator to create a full capacitor. The signal picked up by this sensor was then amplified by 60 dB with a high input impedance amplifier circuit and further conditioned through filtering. Two measurements were made of the same circuit, but with different input impedances; one with 10 MΩ and one with 10 GΩ input impedance. Additional filtering was designed to combat interference from the main power lines at 50 Hz and 150 Hz that was discovered during initial measurements. The circuits were characterized with their transfer functions, and the ability to amplify a very low-level, low frequency input signal. The results of these measurements show that high input impedance is of critical importance for the functionality of the sensor and that an input impedance of 10 GΩ is sufficient to produce a signal-to-noise ratio (SNR) of 9.7 dB after digital filtering with an input signal of 25 μV at 10 Hz.

Page generated in 0.2889 seconds