• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 123
  • 45
  • 20
  • 12
  • 8
  • 6
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 470
  • 470
  • 136
  • 109
  • 97
  • 96
  • 86
  • 70
  • 69
  • 65
  • 64
  • 55
  • 53
  • 50
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Řízení kvality procesů zpracování biologicky rozložitelných odpadů / Quality control of biodegradable waste process

Krbalová, Maria January 2012 (has links)
The waste production and especially biodegradable waste is following mankind since the beginning of his existence. This thesis deals with a description and dividing of current available waste process technologies, including description of their advantages and disadvantages. The work is also focused on the more detailed description of the composting technology, its control and opportunities to influence on resulting parameters of compost product. The information about technical description of workplace equipments, including industrial and technological processes was provided by the company VIA ALTA from their compost plant in Blansko.
392

Developing an integrated concept for sewage sludge treatment and disposal from municipal wastewater treatment systems in (peri-)urban areas in Vietnam

Karius, Ralf 06 July 2011 (has links)
The study took place in Vietnam at Hanoi University of Science in the framework of the DAAD (German Academic Exchange Service) – “An advancement of the German-Vietnamese University partnerships”. The research has been supported by the program: “Wastewater and Solid Waste Management in Provincial Centers” and belongs to its technical component. The present diploma thesis elaborates the current situation of sewage sludge management in Vietnam and is dealing with sludge characteristics from both domestic sewage treatment facilities and septic tanks. During the research, different treatment components and treatment facilities have been analyzed to carry out a comprehensive survey of sewage sludge types. In this thesis, a guideline (draft) was developed as a main result, which can be helpful to bridge the legislative gap for sewage sludge re-use in Vietnam. In conclusion, an integrated concept has been developed, which recommends the application of selected proceeding elements to treat sewage sludge and the further utilization of re-useable materials in agriculture in a controlled and environmentally-safe manner.:Abbreviations .......................................................................................................................... 4 List of Figures ......................................................................................................................... 5 List of Tables .......................................................................................................................... 6 Acknowledgement .................................................................................................................. 7 Abstract .................................................................................................................................. 8 1 Introduction ................................................................................................................... 10 2 Legal framework for sewage sludge management in Vietnam ................................. 13 2.1 Background ........................................................................................................... 13 2.2 Institutional framework .......................................................................................... 13 2.3 Legal framework.................................................................................................... 15 2.4 Standards .............................................................................................................. 18 2.4.1 Technical standards ...................................................................................... 18 2.4.2 National standards ........................................................................................ 19 2.5 Current situation .................................................................................................... 20 3 Theoretical basis for the concept ................................................................................ 22 3.1 Sewage sludge ...................................................................................................... 23 3.1.1 Sewage sludge types .................................................................................... 27 3.1.2 Quantity .......................................................................................................... 30 3.1.3 Sludge volume ............................................................................................... 30 3.1.4 Sludge composition ....................................................................................... 34 4 Municipal wastewater treatment plants ...................................................................... 47 4.1 DEWATS ............................................................................................................... 47 4.2 Waste water management program .................................................................... 48 4.2.1 Results of sludge analysis ............................................................................ 50 4.3 Learned outcomes ................................................................................................ 54 5 Sludge treatment and disposal options ...................................................................... 56 5.1 Goals of sludge treatment .................................................................................... 56 5.2 Processing elements ............................................................................................ 58 5.2.1 Pre-treatment ................................................................................................. 59 5.2.2 Transportation................................................................................................ 60 5.2.3 Stabilization.................................................................................................... 60 5.2.4 Disinfection .................................................................................................... 65 5.2.5 Removal of water .......................................................................................... 65 5.2.6 Drying ............................................................................................................. 70 5.2.7 Agricultural uses and landscape measures ................................................ 70 5.2.8 Biological re-uses .......................................................................................... 71 5.2.9 Thermal disposal (energy recovery) ............................................................ 74 5.2.10 Land-filling ...................................................................................................... 76 6 Sewage sludge management concept ....................................................................... 78 6.1 Avoidance .............................................................................................................. 79 6.2 Treatment .............................................................................................................. 79 6.2.1 Proposed treatment concept ........................................................................ 81 6.3 Re-use or Disposal ............................................................................................... 84 6.3.1 Small-scale concept ...................................................................................... 85 6.3.2 Medium- and large-scale concept ................................................................ 85 6.4 Conclusion ............................................................................................................. 86 7 Guideline (draft) ............................................................................................................ 88 7.1 Formulation of a guidance document .................................................................. 88 8 Conclusion .................................................................................................................... 89 9 References .................................................................................................................... 92 10 Appendices ................................................................................................................ 97 a) Calculation of sludge amount .................................................................................. 97 b) Guideline (draft) ........................................................................................................ 99 Declaration .......................................................................................................................... 106 / Die Diplomarbeit wurde im Rahmen des Deutsch-Vietnamesischem Auslandsaustauschprogramms an der „Hanoi University of Science“ verfasst. Dieses Vorhaben wurde unterstützt von dem DAAD (Deutschen Akademischen Austausch Dienst), und ist im technischem Bereich des Programms “Wastewater and Solid Waste Management in Provincial Centers“ einzugliedern. Die vorstehende Diplomarbeit beschäftigt sich mit dem aktuellen Klärschlammmanagement in Vietnam und liefert dabei detaillierte Resultate zu verschiedenen Klarschlammtypen aus kommunalen Abwasserbehandlungsanlagen. Bei den Untersuchungen wurden verschiedene Abwasser- und Klärschlammbehandlungsanlagen untersucht, um einen Überblick zu den gebräuchlichen Behandlungsmethoden in Vietnam zu erarbeiten. Zusätzlich wurden die institutionellen und rechtlichen Rahmenbedingungen überprüft. Der Entwurf einer Verordnung zur Verwertung von Klärschlamm in der Landwirtschaft wurde vorgelegt, um eine bestehende rechtliche Lücke in Vietnam zu schließen. Mit dieser Arbeit wurde ein integriertes Konzept entwickelt, welches mittels verschiedene verfahrenstechnische Elemente den Klärschlamm behandelt und darauffolgend das verwertbare Material in ausgewählten landwirtschaftlichen Flächen in einer kontrollierten und umweltschonenden Weise verwertet.:Abbreviations .......................................................................................................................... 4 List of Figures ......................................................................................................................... 5 List of Tables .......................................................................................................................... 6 Acknowledgement .................................................................................................................. 7 Abstract .................................................................................................................................. 8 1 Introduction ................................................................................................................... 10 2 Legal framework for sewage sludge management in Vietnam ................................. 13 2.1 Background ........................................................................................................... 13 2.2 Institutional framework .......................................................................................... 13 2.3 Legal framework.................................................................................................... 15 2.4 Standards .............................................................................................................. 18 2.4.1 Technical standards ...................................................................................... 18 2.4.2 National standards ........................................................................................ 19 2.5 Current situation .................................................................................................... 20 3 Theoretical basis for the concept ................................................................................ 22 3.1 Sewage sludge ...................................................................................................... 23 3.1.1 Sewage sludge types .................................................................................... 27 3.1.2 Quantity .......................................................................................................... 30 3.1.3 Sludge volume ............................................................................................... 30 3.1.4 Sludge composition ....................................................................................... 34 4 Municipal wastewater treatment plants ...................................................................... 47 4.1 DEWATS ............................................................................................................... 47 4.2 Waste water management program .................................................................... 48 4.2.1 Results of sludge analysis ............................................................................ 50 4.3 Learned outcomes ................................................................................................ 54 5 Sludge treatment and disposal options ...................................................................... 56 5.1 Goals of sludge treatment .................................................................................... 56 5.2 Processing elements ............................................................................................ 58 5.2.1 Pre-treatment ................................................................................................. 59 5.2.2 Transportation................................................................................................ 60 5.2.3 Stabilization.................................................................................................... 60 5.2.4 Disinfection .................................................................................................... 65 5.2.5 Removal of water .......................................................................................... 65 5.2.6 Drying ............................................................................................................. 70 5.2.7 Agricultural uses and landscape measures ................................................ 70 5.2.8 Biological re-uses .......................................................................................... 71 5.2.9 Thermal disposal (energy recovery) ............................................................ 74 5.2.10 Land-filling ...................................................................................................... 76 6 Sewage sludge management concept ....................................................................... 78 6.1 Avoidance .............................................................................................................. 79 6.2 Treatment .............................................................................................................. 79 6.2.1 Proposed treatment concept ........................................................................ 81 6.3 Re-use or Disposal ............................................................................................... 84 6.3.1 Small-scale concept ...................................................................................... 85 6.3.2 Medium- and large-scale concept ................................................................ 85 6.4 Conclusion ............................................................................................................. 86 7 Guideline (draft) ............................................................................................................ 88 7.1 Formulation of a guidance document .................................................................. 88 8 Conclusion .................................................................................................................... 89 9 References .................................................................................................................... 92 10 Appendices ................................................................................................................ 97 a) Calculation of sludge amount .................................................................................. 97 b) Guideline (draft) ........................................................................................................ 99 Declaration .......................................................................................................................... 106
393

BIOCHEMICAL METHANE POTENTIAL TESTING AND MODELLING FOR INSIGHT INTO ANAEROBIC DIGESTER PERFORMANCE

Sarah Daly (9183209) 30 July 2020 (has links)
<p>Anaerobic digestion uses a mixed, microbial community to convert organic wastes to biogas, thereby generating a clean renewable energy and reducing greenhouse gas emissions. However, few studies have quantified the relationship between waste composition and the subsequent physical and chemical changes in the digester. This Ph.D. dissertation aimed to gain new knowledge about how these differences in waste composition ultimately affect digester function. This dissertation examined three areas of digester function: (1) hydrogen sulfide production, (2) digester foaming, and (3) methane yield. </p> <p>To accomplish these aims, a variety of materials from four different large-scale field digesters were collected at different time points and from different locations within the digester systems, including influent, liquid in the middle of the digesters, effluent, and effluent after solids separation. The materials were used for biochemical methane potential (BMP) tests in 43 lab-scale lab-digester groups, each containing triplicate or duplicate digesters. The materials from field digesters and the effluents from the lab-digesters were analyzed for an extensive set of chemical and physical characteristics. The three areas of digester function were examined with the physical and chemical characteristics of the digester materials and effluents, and the BMP performances. </p> <p>Hydrogen sulfide productions in the lab-digesters ranged from non-detectable to 1.29 mL g VS<sup>-1</sup>. Higher H<sub>2</sub>S concentrations in the biogas were observed within the first ten days of testing. The initial Fe(II) : S ratio and OP concentrations had important influences on H<sub>2</sub>S productions. Important parameters of digester influents related to digester foaming were the ratios of Fe(II) : S, Fe(II) : TP, and TVFA : TALK; and the concentrations of Cu. Digesters receiving mixed waste streams could be more vulnerable to foaming. The characteristics of each waste type varied significantly based on substrate and inoculum type, and digester functioning. The influent chemical characteristics of the waste significantly impacted all aspects of digester function. Using multivariate statistics and machine learning, models were developed and the prediction of digester outcomes were simulated based on the initial characteristics of the waste types. </p>
394

Matavfallsinsamling - vad tycker Danderydsborna?

Meyer, Ruth January 2010 (has links)
Avfallsplanen i Danderyds kommun innefattar ett delmål år 2012 att materialåtervinning ska öka med 40 % från 2009 års nivå. I materialåtervinning inkluderas biologisk behandling av matavfall. En möjlig åtgärd för att uppfylla detta mål är att införa insamling av matavfall för rötning. För att ett införande av matavfallsinsamling ska bli så framgångsrikt som möjligt är det viktigt att studera kommuninvånarnas inställning till detta. En litteraturstudie genomfördes för att undersöka om rötning är en lämplig behandlingsmetod för matavfall för Danderyds kommun. Ytterligare studerades olika insamlingssystem för matavfall, miljöstyrande taxa, erfarenheter från kommuner med matavfallsinsamling och faktorer som styr människors beteende för källsortering. Inga entydiga resultat finns för att rötning är den mest lämpliga behandlingsmetoden för matavfall men det finns många fördelar såsom, produktion av biogas som är en bristvara i Stockholmsområdet, kretsloppet sluts och näringsämnen och mullbildande ämnen återförs till jorden, utsortering av matavfall kan också ge ett ökat intresse för övrig källsortering och att biogas är ett förnyelsebart bränsle. En enkät formulerades och skickades ut till 1000 hushåll, 600 i småhus och 400 i flerfamiljshus för att undersöka de boendes attityd i Danderyds kommun. Svarsfrekvensen för utskicket uppgick till 60 % men endast 39 % var rätt ifyllda för vidare analys av resultatet för småhus och 30 % för flerfamiljshus. Intresset för matavfallsinsamling var stort; nästan 70 % av hushållen i småhus och ungefär 60 % i flerfamiljshus var positivt inställda eller mycket positivt inställda till utsortering av matavfall. 90 % var villiga att göra en stor eller en viss ansträngning vid ett eventuellt införande av matavfallsinsamling. Resultatet från enkäten gav också att 60 % av kommuninvånarna är beredda att förändra sin livsstil till förmån för miljön. När det gällde källsortering angav de svarande att det största problemet var tillgängligheten till återvinningsstationer och att fastighetsnära insamling definierades som den största motivationsåtgärden från Danderyds kommun. Utifrån de förutsättningar som finns i Danderyds kommun och den organisation som finns för avfallshantering och för att uppnå de miljömål som är definierade i avfallsplanen till 2012 föreslås insamling av matavfall för rötning. För att få hög kvalitet på matavfallet bör det samlas in i papperspåse och det utsorterade matavfallet placeras i separat, ventilerat kärl för hushåll i småhus. Vidare föreslås att anslutning till matavfallsinsamling ska vara frivillig. För att motivera kommuninvånarna till att sortera ut sitt matavfall föreslås också att avfallstaxan ska vara miljöstyrd, d.v.s. anslutning till matavfallsinsamling ska ge en lägre avfallstaxa än om ingen utsortering sker och att kommunen ska förse hushållet med lämplig utrustning för matavfallsinsamling. Flerfamiljshus har olika förutsättningar beroende av hur fastighetens avfallsutrymme är dimensionerat och avfallshanteringen bör lösas från fall till fall, en öppen kommunikation mellan avfallsplaneraren och fastighetsförvaltaren bör etableras för att anslutning till matavfallsinsamling ska bli framgångsrik för de boende i fastigheten, kommunen och renhållningsarbetarna. / The municipality of Danderyd is one of the smallest municipalities in Sweden in terms of area it covers. There are about 30 000 inhabitants distributed on 12 710 households. Each inhabitant in Danderyd generates about 220 kg of household waste per year. An analysis of the content of the waste bags was performed in 2009. The conclusion was that the household waste contains about 50 % of food waste and almost 25 % of packaging waste that are included in the recycle scheme for packaging in Sweden; hence there is plenty of material that potentially could be recycled in each waste bag in Danderyd. The waste management plan of the municipality of Danderyd contains different goals that should be fulfilled by the year 2020, there are also some sub targets that should be met by the years 2012 and 2016. One of the sub targets is that the recycling of recyclable material should increase by 40 % compared to the level 2009, including biological treatment of organic waste. One possible measure to reach this sub target is to implement collection of food waste from the households. In order to introduce a possible collection of organic waste, it is important to investigate the attitude towards such a scheme of the inhabitants in Danderyd. Therefore, this study has been performed as a master thesis on the request of the city municipal of the municipality of Danderyd. A questionnaire was distributed to 1000 households in Danderyd, 600 to single family house and 400 to households in multiple dwellings. A literature review was also performed in order to find out if anaerobic digestion is a suitable method to treat the collected organic waste in Danderyd in an economical and environmental perspective. Furthermore, different collection systems for organic waste, differentiated environmental waste collection fees, experience from municipalities that already have a collection of organic waste and factors for successful recycling of recyclable materials were also studied in the literature review. There was no unequivocal result that fermentation of organic waste is the most suitable treatment method of food waste. There are advantages such as; the closure of the material loop, nutrients are recycled back to soil, production of biogas that is a renewable fuel and could replace fossil fuel, biogas is also a scare commodity in the area of Stockholm and the separation and recycling of organic waste could increase the interest of environmental issues and also increase the recycling of other recyclable packaging materials. The questionnaire was returned by 60 % of the households but only 39 % of the questionnaire from single family households and 30 % of the households in multiple dwellings were completed correctly. Furthermore, the result showed that there was a large interest for an introduction of collection of organic waste, almost 70 % of the household in villas and about 60 % of households in multiple dwellings said that they were very interested or interested in participating in a collection scheme of organic waste. Of the household 90 % answered that they were prepared to make a large effort or some effort to separate their food waste if an introduction of a recycling scheme of food waste was made. There was also a large interest in environmental issues and 60 % of the households answered that they thought their life style affected the environment and that they were prepared to change their life style to the benefit of the environment. Regarding the recycling of other recyclable materials, the respondents answered that the largest problem was the availability of recycling stations and that collection of packaging waste at the property was requested as the largest motivation measure that the municipality could offer in order to increase recycling. Based on the condition in Danderyd, the existing organization of waste management and in order to reach the environmental sub targets that are defined in the waste management plan, is an introduction of a collection scheme of food waste for anaerobic digestion suggested. The organic waste should be gathered in paper bags and placed in a separate ventilated garbage bin for single family households. The conditions of the refuse chamber differ for multiple dwellings; therefore the possibility to separate organic waste should be organized for each property. The municipality should establish an open communication with each estate manager in order to facilitate the affiliation to the food waste collection scheme. Furthermore, the affiliation to the food waste collection scheme should be optional in order to achieve good quality of the food waste. To motivate the inhabitants to join the collection scheme, a differentiated environmental waste fee is suggested. The municipality should also provide suitable equipment for the collection of food waste.
395

Opportunities for Industrial Symbiosis BetweenCHP and Waste Treatment Facilities : (Case Study of Fortum and Ragn Sells, Brista)

Arushanyan, Yevgeniya January 2011 (has links)
Pursuing the possibilities of increasing efficiency, saving costs and improving environmental performance more and more companies today are looking into the possibilities of industrial synergies between companies andprocesses. This study is considering the possibilities of industrial symbiosis between combined heat and power plant (Fortum) and a waste sorting facility (Ragn Sells). The paper shows possible scenarios of utilization heat fromCHP for the various processes within the waste treatment facility. The work includes the overview of previous research done in this area as well as theoretical analysisand estimation of the probable economic and environmental effects from the application of industrial symbiosis. The study covers several possibilities for the industrial symbiosis between CHP and waste treatment facility in form of heat application for the waste streams upgrading.The study proposes the heat application for the following processes: composting speed-up, anaerobic digestion, sludge drying, waste oil treatment and concrete upgrading. In the result of the work the conclusions are made concerning the possibility and feasibility of application of the proposed scenarios and their environmentaland economic effects. / Division Industrial Ecologywww.kth.se/itm/indecowww.ima.kth.se
396

Inom vilka områden behövs framtida biogassatsningar? / Future support to biogas production in Sweden

Gillgren, Maria January 2010 (has links)
Energimyndigheten har från Regeringen blivit tilldelad 100 miljoner kronor att fördela som investeringsstöd för att främja en effektiv och utökad produktion, distribution samt användning av förnybara gaser såsom biogas. Myndigheten har samtidigt fått i uppdrag att utveckla en sektorsövergripande biogasstrategi och föreslå åtgärder som på kort och lång sikt kan bidra till ökad användning av biogas. Denna strategi ska också tjäna som ett underlag för fördelning av olika former av stöd inom sektorn. Syftet med detta examensarbete är att sammanställa information som kan bidra som underlag vid upprättandet av den sektorsövergripande biogasstrategin. Ett annat syfte är att bidra med underlag för Energimyndighetens bedömning av var ett investeringsstöd kan ge störst effekt för den fortsatta utvecklingen inom biogasområdet. Detta stöd avser den senaste, ovan nämnda, utlysning som Energimyndigheten gjort inom området. Examensrapporten innehåller bland annat en sammanställning av gjorda insatser inom forskningsområdet biogas de senaste åren, finansierat av framför allt Energimyndigheten, men även en inblick i vilka biogassatsningar som är gjorda av andra nationella aktörer. Ett antal personer från bland annat branschorganisationer har intervjuats för att ta del av deras syn på den framtida biogasmarknaden, vilka satsningar som bör göras och vilka hinder som har störst inverkan. Organisationerna är valda utifrån kriteriet att de ska representera olika delar av biogasbranschen och att olika synvinklar därigenom ska framkomma. Rapporten innehåller slutsatser som dragits av tidigare biogassatsningar hos Energimyndigheten och identifiering av biogasområden där det föreligger stort behov av framtida satsningar för utökad produktion, distribution och användning.  Ett område som i detta examensarbete har identifierats ha stort behov av framtida biogassatsningar är bland annat framtagande av alternativa rötningssubstrat, eftersom mängden tillgängligt substrat nuläget inte är tillräcklig. Detta utgör idag en begränsning för biogasproduktionen. Det bör även satsas mer på förbehandling av substrat innan rötning, vilket ökar gasproduktionen och förbättrar substratutnyttjandet i större utsträckning. Mer satsningar behövs också kring hur biogasprocessens slutprodukt, rötresten, kan bli en mer attraktiv produkt så att återcirkulering av växtnäring kan ske i större grad genom rötrestspridning på åkermark. Detta är av stor vikt eftersom en ökad volym rötningssubstrat ger upphov till större mängd rötrester som ska hanteras. Andra områden som är i behov av framtida stöd är utveckling av befintliga anläggningar för att öka och effektivisera produktionen. För att optimera processerna bör framför allt mer medel satsas på kunskapsuppbyggnad och spridning av den vetenskap som finns tillgänglig. Att länka samman universitet, högskolor och naturbruksgymnasium med anläggningar i drift kan vara det mest effektiva sättet att nå ut med relevant information och kunskap. Ur ett samhällsekonomiskt perspektiv bör mer medel läggas på att öka gödselrötning då detta minskar metanläckage. / Swedish Energy Agency has been allocated SEK 100 million from the government to distribute as investment grant to promote efficient and expanded production, distribution and use of renewable gases such as biogas. The Agency has also been given the task to develop a multidisciplinary strategy for biogas and propose measures which can contribute to increased use of biogas in the short and long term. This strategy will also serve as a basis for the allocation of various forms of support in the biogas sector.  The purpose of this study is to compile information which can be used as input for the establishment of the multidisciplinary strategy for biogas. Another purpose is to provide information to support the Swedish Energy Agency in the assessment of which areas an investment grant will have the greatest impact for the future development of biogas. This grant refers to the latest call of Swedish Energy Agency in the sector. This report includes a summary of what areas grants have been given for research of biogas in recent years, mainly financed by the Swedish Energy Agency, but also an insight into efforts made by other national operators. A number of people from professional biogas organizations have been interviewed to share their views on the future biogas market. Which efforts should be made and the main obstacles to be overcome are other questions discussed. The report contains conclusions from the experience of previous support from the Swedish Energy Agency as well as identification of areas in which there is great need for future efforts in order to expand the production, distribution and use of biogas. Some areas which have been identified in this thesis for need of future efforts in the biogas sector is for example the development of alternative substrates for anaerobic digestion, because the amount of available substrate is at present not sufficient. This is currently a limitation for the biogas production. There is also a need to further develop the pre-treatment of the substrate before digestion, in order to increase the gas production and improve substrate utilization to a greater extent. More focus are also needed on how the end product from the biogas process, the digestion residues, can become a more attractive product to the recycling of plant nutrients by use as a bio fertilizer on farmland. This is of great importance because larger volume of digestion will result in greater volume of digestion residues to be managed. Other areas in need of future investments are the development of existing facilities to increase and optimize the production. In order to optimize the production processes, more resources should be devoted to capacity building and dissemination of the available knowledge. Linking universities and colleges together with operating biogas plants could be the most effective way to reach out with relevant information and knowledge. From a socioeconomic perspective more resources should be spent on increasing the volume of manure digestion then it is today, which also will result in reduced methane leaks.
397

Anaerobic Digestibility of Microalgae : Fate and Limitations of Long Chain Fatty Acids in the Biodegradation of Lipids

Hamani Abdou, Rekia 04 1900 (has links)
No description available.
398

Úprava kalů z čistíren odpadních vod před jejich dalším využitím / Treatment of Waste Water Treatment Sludge Prior of its Following Utilization

Pěček, Jan January 2010 (has links)
Industrial production of cellulose is an energy intensive process. Businesses aim to utilized as much input energy, materials as possible while minimizing the waste as well. In addition to the main product – cellulose and large amounts of organically polluted water which is subsequently treated in waste water treatment plants. This PhD thesis deals with formation of suitable mixing formula for sludge from cellulose production and available materials (waste) from close neighborhood of Biocel Paskov a.s. so that well balanced cofermentation products are achieved. This mainly involves grass from lawn maintenance, grass ensilage, potato peels, and leftovers from vegetable processing. Fermentation processes (both mesophilic and thermophilic) of prepared fermentation products were conducted in semi-continuous and continuous laboratory fermentation units. Reduction of organic mass depending on residence time was closely observed as well as production and quality of biogas along with quality of output digestate. Course of process behaviour under controlled pH was tested. Results of particular tests were integrated into graphs. Conclusion of the thesis presents balance scheme drawn for selected variants, and design of real fermentation station with individual buildings, operations, basic machinery and equipment description including investment costs. Financial calculation and expected investment return was conducted in two variants – without subsidies and including subsidies from Operational Programme Renewable Sources of Energy.
399

Coproduction of Biomass Crops and Anaerobic Digestion: Effects on the Life Cycle Emissions of Bioenergy and Bioproducts

Rodjom, Abbey Michaella 03 June 2021 (has links)
No description available.
400

TECHNO-ECONOMIC ANALYSIS OFRENEWABLE GAS PRODUCTION AND ELECTRICITY GENERATION FROM ORGANIC WASTE : A Feasibility Study of a Conceptual Biogas Plant in the Santander Region, Colombia

Sassersson Busadee, Nelly, Ahmed, Laura January 2023 (has links)
Strategies to harness the energy from organic waste is gaining importance on a global scale, especially in countries with large quantities of it. In this paper, a techno-economic analysisand a field study were performed to investigate the feasibility of five scenarios for a conceptual biogas facility, based on a case study from Colombia. The plant designs involved anaerobic digestion followed by different combinations of biogas upgrading, combined heat and power and/or steam methane reforming technologies and investigated four different feedstocks. The results demonstrated that the road infrastructure leading to the current proposed site is inadequate, and a new location should be found. Anaerobic digestion alone was most profitable with the shortest payback period. Organic Municipal Solid Waste and Poultry Manure produced high techno-economic potential depending on the scenario. The production of hydrogen using anaerobic digestion, steam methane reforming and combined heat and power with or without upgrading is not recommended due to the current market prices and high heat consumption. However, it can be profitable to implement green energy initiatives as a strategy to establish and lead future energy markets.

Page generated in 0.0689 seconds