• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 123
  • 45
  • 20
  • 12
  • 8
  • 6
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 470
  • 470
  • 136
  • 109
  • 97
  • 96
  • 86
  • 70
  • 69
  • 65
  • 64
  • 55
  • 53
  • 50
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Techno-economical analysis of the benefits of anerobic digestion at a rural sisal processing industry in Tanzania

Varela González, Cristina January 2017 (has links)
The low electrification rates and lack of access to energy services are some of the main challenges of the Tanzanian energy system. However, increasing access to power and other energy services would lead to an increase in the energy demand, which the Tanzanian energy system will not be able to meet. Therefore, new solutions are needed to increase access to modern and affordable energy services that facilitate economic and social development, but in a way that is also sustainable. One promising solution seems to be the use of the abundant agricultural residues to produce energy, which could be particularly relevant for rural areas without access to the national grid. Further, the Tanzanian sisal industry has a challenge in addressing the emissions from sisal processing. Each year, the national industry produces approximately one million ton of Sisal Decortication Residue (SDR), causing local eutrophication as well as emissions of methane, a potent greenhouse gas. The solution under study in this thesis is the potential use of the residue generated at a sisal estate in the region of Tanga (Tanzania), to generate biogas, which could potentially produce electricity and heat when fed into a CHP unit. The AD process also reduces the negative environmental impact of the waste. Given the substantial amounts of sisal waste produced at the estate every day, the project aims at providing a solution that will benefit the owner of the estate, the environment and the local communities. It was found that the potential for biogas production is close to 1,200,000 m3 per year. In a CHP unit, this amount of gas would produce around 2,340 MWh of electricity and over 4,160 MWh of heat per year. The different potential applications for the biogas and products are presented and analysed in the local context. The results of the study suggest that the solution that would provide higher benefits from an economic, social, and environmental perspective is to supply part of the biogas to the surrounding villages for its use as a cooking fuel and fed the remaining electricity into the national grid. For this application it was found that the NPV of the project at the end of its lifetime is close to 1,580,000 USD, and the investment would be recovered in less than 9 years. At the same time, the use of biogas as cooking fuel would significantly benefit the households and the environment, by reducing the serious health and environmental problems derived from the processing of traditional biomass resources. / Bristande tillgång till energitjänster är en av de största utmaningarna för energisystemet i Tanzania. Men förbättrad tillgång till energitjänster kommer att leda till en snabb ökning av energibehov i landet, som det tanzaniska energisystemet inte kan hantera. En möjlig lösning kan vara att använder de rikliga jordbruksavfall för energiändamål, särskilt i landsbygdsområdena som saknar tillträde till det nationella elnätet. Denna rapport studerar möjligheterna att använda avfallet från produktion av sisalfiber (vanligtvis kallade Sisal Decortication Residue, SDR) som genererats vid en egendom i regionen Tanga (Tanzania) för att generera biogas, som också kunna producera el och värme i kraftvärmevek. Med tanke på den betydande mängd avfall som producera varje dag, är målet för projektet att hitta en lösning som egendomens ägare, miljön och lokala samhällen kan dra nytta av. Det potentiella utbytet av biogas med dagens produktionsvolym är ca 1,200,00 m3 per år. Detta motsvarar ca 2,340 MWh el samt 4,160 MWh värme per år. Olika potentiella tillämpningar för biogasen och biprodukterna har analyserad och jämförd för gällande lokala förutsättningar. Resultaten av studien tyder på att lösningen för att maximera sociala, ekonomiska och miljömässiga fördelar är att leverera en del av den biogas som framställs till de omgivande byarna för dess användning som bränsle för matlagning. Resten av elen ska tillföras elnätet. Plantagen köper sedan den el som krävs för den egna produktionen. Resultaten uppgå till ett positivt nettonuvärde (NPV) på omkring 1 580 000 USD och en återbetalningsperiod som är kortare än 9 år. Samtidigt skulle hushåll och miljön få fördelar av den biogasen genom att undvika de alvarliga problemer som hänger samman med traditionella biobränslen.
402

PREDICTING SYNERGISTIC BEHAVIOR IN ANAEROBIC CO-DIGESTION OF AGRO-INDUSTRIAL WASTE USING MACROMOLECULAR COMPOSITION OF SUBSTRATES

Jennifer A Rackliffe (9116024) 16 November 2023 (has links)
<p dir="ltr">Improving environmental sustainability in energy production and waste management are of critical importance. Anaerobic digestion (AD) uses microbes to biologically decompose organic waste and produce biogas, which can be used for various forms of sustainable energy. It can be particularly valuable for livestock facilities considering AD of their manure, and potentially other feedstocks as well, a process known as co-digestion. Improved understanding of co-digestion of agro-industrial feedstocks is critical for these facilities. Understanding the macromolecular composition (carbohydrate, protein, and lipid portions) of potential AD feedstocks has the potential to provide important information for predicting important parameters of AD behavior. However, the stability of these macromolecules in AD samples during long-term storage must be confirmed. Furthermore, synergistic and antagonistic impacts of co-digestion on methane production and digestate composition need to be more thoroughly explored.</p><p dir="ltr">This dissertation investigates the impact of storage at refrigeration temperatures (4°C) for up to one-year on the macromolecular composition of various agro-industrial feedstocks (beef manure, starch, slaughterhouse waste, soap stock, and filter press slurry) and anaerobic co-digestion samples. These same feedstocks were co-digested with manure in batch digesters at different proportions, using two or three feedstocks to determine possible synergistic effects.</p><p dir="ltr">The findings show that minimal macromolecular degradation occurred in AD samples during storage at refrigeration temperatures for up to one-year. A major exception was samples containing high concentrations of readily biodegradable starches, which did experience >50% carbohydrate degradation. This indicates a need for methodological rigor during sample storage and reporting experimental design.</p><p dir="ltr">Furthermore, the co-digestion experiments demonstrated frequent improvements or synergy in specific methane yield, methane production rate, and a wide variety of physical and chemical parameters in the digester effluent. Specific methane yield was shown to be at least additive, with improvement ranging from 3-168%. Some improvements in kinetic performance were also observed and quantified. Statistical results suggest that influent characteristics could be useful as predictors for methane production. This research could catalyze additional work needed to optimize co-digestion feeding strategies for full-scale digesters.</p>
403

Masters_TJS.pdf

Trevor J Shoaf (8588478) 08 December 2022 (has links)
<p>Biodegradation of untreated cotton, linen, and hemp textiles as three substrates – measured through biogas production – was studied to compare digestion yield and the ability of anaerobic sludge as inoculum to utilize the sugars in these textiles without pretreatment. Digestion of these textile substrates was carried out over a 26-day study, with daily sampling of biogas production, to measure biogas production rate and accumulation. The flasks were maintained at 37 °C and 150 RPM with a substrate to inoculum ratio (SIR) of 0.5 g sugars from substrate g-1 VSinoculum from anaerobic sludge. Biogas samples were analyzed through gas chromatography (GC) to determine general biogas composition produced by each textile. Biogas production was notable after the four-day mark; with first peaks occurring on day five (hemp, cellulose), day seven (cotton), and day nine (linen). Production of biogas in the control largely outperformed trials with no added substrate, but overall the methane fractions of the gas was lower than expected, indicating that pretreatment is likely necessary for more complete biodegradation of natural textiles. </p>
404

Kontinuerlig rötning med hydrokol för högre biogasutbyte / Continuous anaerobic digestion with hydrochar for higher biogas yield

Kariis, Annette January 2023 (has links)
Befolkningsökningen och därmed efterfrågan på energikällor som tillhandahålls från fossila bränslen leder till allvarliga miljöproblem på grund av utsläpp av växthusgaser. En annan utmaning är att effektivt hantera organisk avfall som till exempel matavfall som genereras världen över. Matproduktionen orsakar stora miljöproblem som övergödning, klimatpåverkan, kemikaliespridning, regnskogsavverkning och utfiskning. Det är därför viktigt att matsvinnet minskar men också att effektiva metoder används för hantering av avfallet för att inte belasta miljön ytterligare.  En lösning för att hantera organiskt avfall, och samtidigt producera en förnybar energikälla är att använda anaerob rötning för att producera biogas. Vid anaerob rötning bryts organiskt material ner i en syrefri miljö, vilket resulterar i produktion av biogas som innehåller koldioxid och energirik metangas. Biprodukten som bildas är rötrest, som kan vidare användas som gödsel.  Den anaeroba rötningsprocessen har olika utmaningar där biogasprocessen kan stabiliseras och effektiviseras genom tillsats av hydrokol. Hydrokol är ett kolrikt material framställd från hydrotermisk karbonisering av biomassa. Eftersom det finns mycket begränsad forskning på kontinuerlig anaerob rötning av matavfall med tillsats av hydrokol, och ingen forskning har utförts på hydrokol som är tillverkat från skogsindustriellt avfall, så var det viktigt och av intresse att genomföra denna studie.  Syftet med studien är att undersöka hur tillsats av hydrokol påverkar biogasproduktion, metanproduktion och stabiliteten i en kontinuerlig anaerob rötningsprocess. Vidare syftar studien till att analysera effekterna av hydrokol på rötresterna som genereras, undersöka möjligheterna av sammankoppling av en befintlig rötkammare med en HTC reaktor, samt bedöma om det är ekonomiskt försvarbart att investera i hydrokol som additiv i rötningsprocessen. Målet har varit att undersöka om tillsats av hydrokol ger högre biogasutbyte, ökad metanproduktion och en stabil rötningsprocess. Målet har även varit att analysera rötresterna, utföra en materialflödesanalys över när Karlskogas rötkammare sammankopplas med en HTC reaktor, samt utföra en livscykelkostnadsanalys för att svara på om det är ekonomiskt försvarbart att investera i en HTC anläggning, alternativt att köpa in hydrokol externt.  De laborativa försöket gjordes på Karlstads universitet där rötningen var en enstegs anaerob samrötning som gjordes i två kontinuerligt matade reaktorer. Inmatning och uttag av gas gjordes en gång om dagen där försöksserierna pågick under 68 dagars tid. Substratblandningarna eftersträvades efterlikna substratförhållandena på Biogasbolaget i Karlskoga. Inmatat material, det vill säga substratblandningen utgjorde 8,5% av ensilage, 0,6% av glycerol, och 90,9% av substrat (matavfall och flytgödsel). Detta förhållande är detsamma som på Biogasbolaget. I en av reaktorerna användes substratblandningen och i den andra substratblandningen och hydrokol. Hydrokolet blandades in med substratblandningen vid en koncentration på 8g/l. Materialflödesanalysen gjordes över Karlskogas biogasanläggning där flödena ritades ut i programmet Stan 2.5. LCC gjordes utifrån två olika scenarion, om hydrokol köps in externt alternativt att en HTC-reaktor ansluts till biogasanläggningen. Det valdes att beräkna utifrån scenarion om metanutbytet ökar med 17%, enligt resultat från studien gjord av Maria Kristoffersson eller om utbytet ökar med 53% enligt resultat från den här studien.  Resultatet visar att tillsats av hydrokol som additiv ger en ökning på 59% för biogas utbytet och 53,5% för metanutbytet. I medelvärde från rötningsdag 27 till 68 så resulterade biogasproduktionen för hydrokolsreaktorn i 533 ml/g VS. Medelvärdet för referensreaktorn resulterade i 70 ml/g VS. Det här resulterar i en procentuell ökning med 663%. Eftersom misstankar finns att referensreaktorn inte bildar biogas som den ska har biogasproduktionen jämförts med tidigare studie som har gjorts på ungefär samma substratblandning och samma utrustning. Biogasproduktionen i medelvärde för referensreaktorn för (Leijen, 2016) resulterade i 335 ml/g VS. Procentuella skillnaden i biogasproduktion resulterar då i 59% mellan referensreaktorn och hydrokolsreaktorn. Metanproduktionen i hydrokolsreaktorn resulterade i medelvärde till 367 ml/g VS, i referensreaktorn till 18 ml/g VS och i referensreaktorn i Leijens studie till 237 ml/g VS. Jämfört med Leijens resultat resulterade den procentuella ökningen i metangasproduktion till 53,5%. En stabil rötningsprocess bekräftades genom att pH på rötresterna resulterade i 7,66 under hela rötningsprocessen.  Det är möjligt att sammankoppla Karlskogas befintliga anläggning med en HTC-anläggning och återföra rötresterna för hydrokolsproduktion. Rötresterna med ett högre kol-och näringsinnehåll kan återanvändas och recirkuleras för produktion av hydrokol. Av 10 tonTS/dag rötrester som kommer ut från rötningskammaren kommer 2,46 tonTS/dag att recirkuleras för hydrokolsproduktion. Resten av rötresterna kan användas vidare som gödsel.  Det är ekonomiskt försvarbart att investera i hydrokol som additiv till rötningsprocessen. Genom att bygga en HTC-anläggning, där tillsatsen av hydrokol kan ge 17% respektive 53% högre metanproduktion resulterar nettovinsten i 363 miljoner respektive 1237 miljoner kr över en 20-årsperiod. Alternativet är att köpa in hydrokol externt, där nettovinsten uppgår till 177 miljoner respektive 1052 miljoner kr över samma tidsperiod. Livscykelkostnadsanalysen visar att det är ekonomiskt mer fördelaktigt att investera i en HTC-anläggning jämfört med att köpa hydrokol externt. / The population growth and thus the demand for energy sources provided by fossil fuels leads to serious environmental problems due to greenhouse gas emissions. Another challenge is to effectively manage organic waste such as food waste generated worldwide. Food production causes major environmental problems such as eutrophication, climate impact, chemical dispersion, rainforest deforestation and depletion. It is therefore important that food waste is reduced, but also that effective methods are used to manage the waste so as not to burden the environment further.  One solution for managing organic waste, while producing a renewable energy source, is to use anaerobic digestion to produce biogas. In anaerobic digestion, organic material is broken down in an oxygen-free environment, resulting in the production of biogas containing carbon dioxide and energy-rich methane gas. The by-product formed is digestate, which can be further used as fertilizer.  The anaerobic digestion process has various challenges, where the biogas process can be stabilized and made more efficient by adding hydrochar. Hydrochar is a carbon-rich material produced from hydrothermal carbonization of biomass. Since there is very limited research on continuous anaerobic digestion of food waste with the addition of hydrochar, and no research has been conducted on hydrochar produced from forest industry biosludge, it was important and of interest to conduct this study.  The aim of the study is to investigate how the addition of hydrochar affects biogas production, methane production and the stability of a continuous anaerobic digestion process. Furthermore, the study aims to analyze the effects of hydrochar on the digestate generated, investigate the possibilities of connecting an existing digester with an HTC reactor, and assess whether it is economically justifiable to invest in hydrochar as an additive in the digestion process. The goal has been to investigate whether the addition of hydrochar provides higher biogas yield, increased methane production and a stable digestion process. The goal has also been to analyze the digestate, perform a material flow analysis of when Karlskoga's digester is connected to an HTC reactor, and perform a life cycle cost analysis to answer whether it is economically justifiable to invest in an HTC plant, or to purchase hydrochar externally.  The laboratory experiments were carried out at Karlstad University where the digestion was a single-stage anaerobic co-digestion in two continuously fed reactors. Gas was fed and withdrawn once a day and the experimental series lasted for 68 days. The substrate mixtures sought to mimic the substrate conditions at Biogasbolaget in Karlskoga. Input material, i.e. the substrate mixture consisted of 8.5% silage, 0.6% glycerol, and 90.9% substrate (food waste and liquid manure). This ratio is the same as at Biogasbolaget. One of the reactors used the substrate mixture and the other used the substrate mixture and hydrochar. The hydrochar was mixed with the substrate mixture at a concentration of 8g/l. The material flow analysis was made over Karlskoga's biogas plant where the flows were drawn in the program Stan 2.5. LCC was made based on two different scenarios, if hydrochar is purchased externally or if an HTC reactor is connected to the biogas plant. It was chosen to calculate based on scenarios if the methane yield increases by 17%, according to results from the study made by Maria Kristoffersson or if the yield increases by 53% according to results from this study.  The results show that adding hydrochar as an additive gives an increase of 59% for the biogas yield and 53.5% for the methane yield. In average from digestion day 27 to 68, the biogas production for the hydrochar reactor resulted in 533 ml/g VS. The average value for the reference reactor resulted in 70 ml/g VS. This results in a percentage increase of 663%. Since there are suspicions that the reference reactor does not produce biogas as it should, the biogas production has been compared with previous studies that have been done on approximately the same substrate mixture and the same equipment. The biogas production in average for the reference reactor for (Leijen, 2016) resulted in 335 ml/g VS. The percentage difference in biogas production then results in 59% between the reference reactor and the hydrochar reactor. The methane production in the hydrochar reactor resulted on average to 367 ml/g VS, in the reference reactor to 18 ml/g VS and in the reference reactor in Leijen's study to 237 ml/g VS. Compared to Leijen's results, the percentage increase in methane gas production resulted in 53.5%. A stable digestion process was confirmed by the fact that the pH of the digestate resulted in 7.66 during the whole digestion process.  It is possible to interconnect the existing Karlskoga plant with an HTC plant and recycle the digestate for hydrochar production. The digestate with a higher carbon and nutrient content can be reused and recycled for hydrochar production. Out of 10 tonTS/day of digestate coming out of the digestion chamber, 2.46 tonTS/day will be recycled for hydrochar production. The rest of the digestate can be further used as fertilizer.  It is economically justifiable to invest in hydrochar as an additive to the digestion process. By building a HTC plant, where the addition of hydrochar can provide 17% and 53% higher methane production, the net profit results in 363 million and 1237 million SEK over a 20-year period. The alternative is to purchase hydrochar externally, where the net benefit amounts to SEK 177 million and 1052 million respectively over the same time period. The life cycle cost analysis shows that it is economically more advantageous to invest in an HTC plant compared to buying hydrochar externally.
405

Feasibility assessment of anaerobic digestion technologies for household wastes in Vietnam

Rodolfo, Daniel Silva, Le, Huang Anh, Koch, Konrad 17 August 2017 (has links)
Anaerobic digestion technologies have been utilized in Vietnam for more than 30 years with thousands of domestic small scale plants, mostly for agricultural and livestock wastes. For municipal solid waste (MSW) the development of biogas plants is far below the current high waste generation rates. The aim of this paper is to present the results of a feasibility assessment of implementing AD to treat the organic fraction of municipal solid waste (OFMSW) in Vietnam. For this purpose, an environmental analysis was performed comparing three treatment scenarios: two hypothetical AD technologies (a wet and a dry fermentation system) and the existing industrial composting facility at Nam Binh Duong Waste Treatment Complex in South Vietnam. This study sought for the technology to recover the most possible resources and energy from the OFMSW, and reduce greenhouse gas (GHG) emissions. The results were then combined with a policy review to support a holistic approach on the feasibility of these technologies in Vietnam. The outcome indicates that by implementing the dry AD system, up to 16.7 GWh of power and 14.4 GWh of heat energy can be generated annually and it can potentially save up to 5,400 Mg of CO2 equivalent per year, presenting the highest resource/energy benefits. The performance of the wet system and composting facility present some advantages particularly if there is a previous segregation of the organic material from the rest of the household wastes. Moreover, current reforms in Vietnam demonstrate the government’s interest in AD technologies, translated into the development of fiscal and financial revenues which incentivize participation from the public and private sector. Finally, these technologies are constantly under development and have the potential to be further improved, which gives hopes that waste treatment systems can be optimized to meet the waste and energy challenges of the future generations. / Phương pháp lên men kị khí đã được áp dụng tại Việt Nam từ hơn 30 năm nay với hàng nghìn các công trình nhỏ chủ yếu xử lý chất thải nông nghiệp và chăn nuôi. Sự phát triển hiện nay của các nhà máy sinh khí biogas còn quá ít cho xử lý lượng phát thải cao rác thải đô thị. Bài báo này trình bày các kết quả việc đánh giá tính khả thi khi áp dụng công nghệ lên men kị khí xử lý phần hữu cơ của chất thải rắn đô thị tại Việt Nam. Với mục đích này, phân tích môi trường được thực hiện để so sánh ba kịch bản xử lý: hai công nghệ lên men kị khí giả định (một cho công nghệ lên men ướt và một cho công nghệ lên men khô) và nhà máy hiện hữu lên men hiếu khí làm phân bón compost tại khu liên hợp xử lý chất thải Nam Bình Dương ở miền Nam Việt Nam. Nghiên cứu này tìm kiếm giải pháp công nghệ để thu hồi nhiều nhất có thể các tài nguyên và năng lượng từ rác thải đô thị và và giảm phát thải khí nhà kính. Các kết quả sau đó được kết hợp với đánh giá chính sách để hỗ trợ cách tiếp cận toàn diện về tính khả thi của các công nghệ này vào Việt Nam. Kết quả cho thấy áp dụng công nghệ lên men kị khí khô có thể tạo ra đến 16,7 GWh điện năng và 14,4 GWh nhiệt năng hàng năm và có khả năng làm giảm đến 8,000 Mg CO2 tương đương mỗi năm, thể hiện lợi ích cao nhất giữa tài nguyên và năng lượng. Hiệu suất của hệ thống lên men kị khí ướt và lên men hiếu khí thể hiện một số lợi thế đặc biệt khi nguyên liệu hữu cơ cho quá trình lên men được tiền phân loại ra khỏi hỗn hợp rác sinh hoạt. Hơn nữa, các đổi mới hiện nay ở Việt Nam thể hiện sự quan tâm của Chính phủ đến các công nghệ lên men kị khí, thể hiện qua sự tăng trưởng tài chính và doanh thu để khuyến khích sự tham gia của khu vực công và tư nhân. Chắc chắn rằng các công nghệ sẽ liên tục được phát triển và có khả năng được cải tiến tốt hơn, mang đến cho chúng ta những hy vọng rằng các hệ thống xử lý chất thải được tối ưu hóa để đáp ứng được các thách thức về chất thải và năng lượng của các thế hệ tương lai.
406

Economic Feasibility and Environmental Analysis of a Municipal Food Waste Collection and Anaerobic Digestion Program Model

Dellinger, Adam Ross January 2013 (has links)
No description available.
407

Development of a Biomass-to-Methanol Process Integrating Solid State Anaerobic Digestion and Biological Conversion of Biogas to Methanol

Sheets, Johnathon P. 12 October 2017 (has links)
No description available.
408

Technical, Microbial, and Economic Study on Thermophilic Solid-state Anaerobic Digestion of Lignocellulosic Biomass

Lin, Long January 2017 (has links)
No description available.
409

Investigation of solid-state fungal pretreatment of Miscanthus for biofuels production

Vasco Correa, Juliana January 2017 (has links)
No description available.
410

Invasive Marine Algae as a Soil Amendment for Island Farmers: Agronomic and Ethnographic Assessment of Implications for Nutrient Management

Reppun, Frederick A.W.L. 30 September 2016 (has links)
No description available.

Page generated in 0.0594 seconds