Spelling suggestions: "subject:"[een] APPROXIMATION ALGORITHMS"" "subject:"[enn] APPROXIMATION ALGORITHMS""
101 |
Untere Schranken für Steinerbaumalgorithmen und die Konstruktion von Bicliquen in dichten GraphenKirchner, Stefan 02 September 2008 (has links)
Die vorliegende Arbeit besteht aus zwei Teilen. Der erste Teil der Arbeit befasst sich mit unteren Schranken für approximative Steinerbaumalgorithmen. Ein Steinerbaum ist ein kürzester Teilgraph, der eine gegebene Teilmenge der Knoten eines Graphen spannt. Das Berechnen eines Steinerbaumes ist ein klassisches NP-schweres Problem, und es existieren mehrere Approximationsalgorithmen, wobei bei den meisten Algorithmen die Approximationsgüte nur durch untere und obere Schranken eingegrenzt werden kann. Für einige dieser Algorithmen werden in dieser Arbeit Instanzen vorgestellt, welche die unteren Schranken verbessern. Für den Relativen Greedy Algorithmus wird außerdem ein Verfahren vorgestellt, mit dem die Güte des Algorithmus eingeschränkt auf die Graphenklasse mit k Terminalen auf einen beliebigen Faktor genau bestimmt werden kann. Der zweite Teil der Arbeit widmet sich vollständig bipartiten Subgraphen mit gleicher Partitionsgrößse, sogenannten balancierten Bicliquen. Seit langem ist bekannt, dass in dichten bipartiten Graphen balancierte Bicliquen mit Omega(log(n)) Knoten existieren, aber es ist unbekannt, ob und wie diese in polynomieller Zeit konstruiert werden können. Der zweite Teil liefert dazu einen Beitrag, indem ein polynomieller Algorithmus vorgestellt wird, der in hinreichend großen dichten bipartiten Graphen eine balancierte Biclique mit Omega(sqrt(log(n))) Knoten konstruiert. / This thesis consists of two parts. The first part is concerned with lower bounds for approximating Steiner trees. The Steiner tree problem is to find a shortest subgraph that spans a given set of vertices in a graph and is a classical NP-hard problem. Several approximation algorithms exist, but for most algorithms only lower and upper bounds for the approximation ratio are known. For some of these algorithms we present instances which improve the lower bounds. When the problem is restricted to the class of graphs with k terminals, we also present a method which can be used to determine the approximation ratio of the Relative Greedy Algorithm with arbitrary precision. The second part is about balanced bicliques, i.e. complete bipartite subgraphs with equal partition sizes. It has been known for a long time that every dense bipartite graph contains a balanced biclique of size Omega(log(n)), but whether and how such a biclique can be constructed in polynomial time is still unknown. Our contribution to this problem is a polynomial time algorithm which constructs a balanced biclique of size Omega(sqrt(log(n))) in sufficiently large and dense bipartite graphs.
|
102 |
Duality theory for optimal mechanism designGiannakopoulos, Ioannis January 2015 (has links)
In this work we present a general duality-theory framework for revenue maximization in additive Bayesian auctions involving multiple items and many bidders whose values for the goods follow arbitrary continuous joint distributions over some multi-dimensional real interval. Although the single-item case has been resolved in a very elegant way by the seminal work of Myerson [1981], optimal solutions involving more items still remain elusive. The framework extends linear programming duality and complementarity to constraints with partial derivatives. The dual system reveals the natural geometric nature of the problem and highlights its connection with the theory of bipartite graph matchings. We demonstrate the power of the framework by applying it to various special monopoly settings where a seller of multiple heterogeneous goods faces a buyer with independent item values drawn from various distributions of interest, to design both exact and approximately optimal selling mechanisms. Previous optimal solutions were only known for up to two and three goods, and a very limited range of distributional priors. The duality framework is used not only for proving optimality, but perhaps more importantly, for deriving the optimal mechanisms themselves. Some of our main results include: the proposal of a simple deterministic mechanism, which we call Straight-Jacket Auction (SJA) and is defined in a greedy, recursive way through natural geometric constraints, for many uniformly distributed goods, where exact optimality is proven for up to six items and general optimality is conjectured; a scheme of sufficient conditions for exact optimality for two-good settings and general independent distributions; a technique for upper-bounding the optimal revenue for arbitrarily many goods, with an application to uniform and exponential priors; and the proof that offering deterministically all items in a single full bundle is the optimal way of selling multiple exponentially i.i.d. items.
|
103 |
Techniques combinatoires pour les algorithmes paramétrés et les noyaux, avec applications aux problèmes de multicoupe. / Combinatorial Techniques for Parameterized Algorithms and Kernels, with Applications to Multicut.Daligault, Jean 05 July 2011 (has links)
Dans cette thèse, nous abordons des problèmes NP-difficiles à l'aide de techniques combinatoires, en se focalisant sur le domaine de la complexité paramétrée. Les principaux problèmes que nous considérons sont les problèmes de Multicoupe et d'Arbre Orienté Couvrant avec Beaucoup de Feuilles. La Multicoupe est une généralisation naturelle du très classique problème de coupe, et consiste à séparer un ensemble donné de paires de sommets en supprimant le moins d'arêtes possible dans un graphe. Le problème d'Arbre Orienté Couvrant avec Beaucoup de Feuilles consiste à trouver un arbre couvrant avec le plus de feuilles possible dans un graphe dirigé. Les résultats principaux de cette thèse sont les suivants. Nous montrons que le problème de Multicoupe paramétré par la taille de la solution est FPT (soluble à paramètre fixé), c'est-à-dire que l'existence d'une multicoupe de taille $k$ dans un graphe à $n$ sommets peut être décidée en temps $f(k)*poly(n)$. Nous montrons que Multicoupe dans les arbres admet un noyau polynomial, c'est-à-dire est réductible aux instances de taille polynomiale en $k$. Nous donnons un algorithme en temps $O^*(3.72^k)$ pour le problème d'Arbre Orienté Couvrant avec Beaucoup de Feuilles et le premier algorithme exponentiel exact non trivial (c'est-à-dire meilleur que $2^n$). Nous fournissons aussi un noyau quadratique et une approximation à facteur constant. Ces résultats algorithmiques sont basés sur des résultats combinatoires et des propriétés structurelles qui concernent, entre autres, les décompositions arborescentes, les mineurs, des règles de réduction et les $s-t$ numberings. Nous présentons des résultats combinatoires hors du domaine de la complexité paramétrée: une caractérisation des graphes de cercle Helly comme les graphes de cercle sans diamant induit, et une caractérisation partielle des classes de graphes 2-bel-ordonnées. / This thesis tackles NP-hard problems with combinatorial techniques, focusing on the framework of Fixed-Parameter Tractability. The main problems considered here are Multicut and Maximum Leaf Out-branching. Multicut is a natural generalisation of the cut problem, and consists in simultaneously separating prescribed pairs of vertices by removing as few edges as possible in a graph. Maximum Leaf Out-branching consists in finding a spanning directed tree with as many leaves as possible in a directed graph. The main results of this thesis are the following. We show that Multicut is FPT when parameterized by the solution size, i.e. deciding the existence of a multicut of size $k$ in a graph with $n$ vertices can be done in time $f(k)*poly(n)$. We show that Multicut In Trees admits a polynomial kernel, i.e. can be reduced to instances of size polynomial in $k$. We give an $O^*(3.72^k)$ algorithm for Maximum Leaf Out-branching and the first non-trivial (better than $2^n$) exact algorithm. We also provide a quadratic kernel and a constant factor approximation algorithm. These algorithmic results are based on combinatorial results and structural properties, involving tree decompositions, minors, reduction rules and $s-t$ numberings, among others. We present results obtained with combinatorial techniques outside the scope of parameterized complexity: a characterization of Helly circle graphs as the diamond-free circle graphs, and a partial characterisation of 2-well-quasi-ordered classes of graphs.
|
104 |
Algoritmos para o problema da cobertura por sensores / Algorithms for the sensor cover problemBarbosa, Rafael da Ponte 12 December 2011 (has links)
Neste trabalho estudamos aspectos algorítmicos do Problema da Cobertura por Sensores. Em linhas gerais, este problema a entrada consiste em uma região a ser monitorada por um conjunto de sensores previamente posicionados, cada qual dotado de bateria com duração limitada, e o objetivo é atribuir a cada sensor um tempo de início, de modo que toda a região seja coberta o maior tempo possível. Focamos nosso estudo no caso unidimensional do problema, chamado Problema da Cobertura de Faixa Restrita, no qual a região a ser monitorada é um intervalo (da reta real). Estudamos diversas variantes, de acordo com os subintervalos que os sensores cobrem (se de tamanhos fixos ou variados), e de acordo com a duração das baterias (se uniformes ou não). Estudamos também o caso preemptivo: quando os sensores podem ser ligados mais de uma vez. Para este último caso, projetamos um algoritmo polinomial bem simples. O Problema da Cobertura de Faixa Restrita é NP-difícil no caso não-preemptivo em que os sensores têm bateria de duração variável. Para este caso, em 2009 Gibson e Varadarajan apresentaram um algoritmo polinomial que provaram ser uma 5-aproximação. Provamos que este algoritmo tem fator de aproximação 4, e mostramos que este fator é justo. Apresentamos também formulações lineares inteiras para este caso, e os resultados computacionais obtidos. / We study the algorithmic aspects of the Sensor Cover Problem. Broadly speaking, in this problem the input consists of a region to be covered by a set of sensors previously positioned, each one powered with a battery of limited duration, and the objective is to assign to each sensor an initial time, so as to cover the given region for as long as possible. We focus our study on the one-dimensional case of the problem, called Restricted Strip Cover Problem, in which the region to be covered is an interval (of the real line). We study several variants, according to the type of the subintervals the sensors cover (if they have fixed length or not), to the duration of the batteries (if uniform or not). We also study the preemptive case: when the sensors can be turned on and off more than once. For this case, we designed a simple polynomial-time algorithm. The Restricted Strip Cover Problem is NP-hard in the non-preemptive case in which the sensors have non-uniform duration batteries. For this case, in 2009 Gibson and Varadarajan designed a polynomial-time algorithm which they proved to be a 5-aproximation. We prove that this algorithm has approximation ratio 4, and show that this ratio is tight. We also present two integer linear formulations for this case, and report on the computational results obtained with this approach.
|
105 |
Algoritmos para o problema da cobertura por sensores / Algorithms for the sensor cover problemRafael da Ponte Barbosa 12 December 2011 (has links)
Neste trabalho estudamos aspectos algorítmicos do Problema da Cobertura por Sensores. Em linhas gerais, este problema a entrada consiste em uma região a ser monitorada por um conjunto de sensores previamente posicionados, cada qual dotado de bateria com duração limitada, e o objetivo é atribuir a cada sensor um tempo de início, de modo que toda a região seja coberta o maior tempo possível. Focamos nosso estudo no caso unidimensional do problema, chamado Problema da Cobertura de Faixa Restrita, no qual a região a ser monitorada é um intervalo (da reta real). Estudamos diversas variantes, de acordo com os subintervalos que os sensores cobrem (se de tamanhos fixos ou variados), e de acordo com a duração das baterias (se uniformes ou não). Estudamos também o caso preemptivo: quando os sensores podem ser ligados mais de uma vez. Para este último caso, projetamos um algoritmo polinomial bem simples. O Problema da Cobertura de Faixa Restrita é NP-difícil no caso não-preemptivo em que os sensores têm bateria de duração variável. Para este caso, em 2009 Gibson e Varadarajan apresentaram um algoritmo polinomial que provaram ser uma 5-aproximação. Provamos que este algoritmo tem fator de aproximação 4, e mostramos que este fator é justo. Apresentamos também formulações lineares inteiras para este caso, e os resultados computacionais obtidos. / We study the algorithmic aspects of the Sensor Cover Problem. Broadly speaking, in this problem the input consists of a region to be covered by a set of sensors previously positioned, each one powered with a battery of limited duration, and the objective is to assign to each sensor an initial time, so as to cover the given region for as long as possible. We focus our study on the one-dimensional case of the problem, called Restricted Strip Cover Problem, in which the region to be covered is an interval (of the real line). We study several variants, according to the type of the subintervals the sensors cover (if they have fixed length or not), to the duration of the batteries (if uniform or not). We also study the preemptive case: when the sensors can be turned on and off more than once. For this case, we designed a simple polynomial-time algorithm. The Restricted Strip Cover Problem is NP-hard in the non-preemptive case in which the sensors have non-uniform duration batteries. For this case, in 2009 Gibson and Varadarajan designed a polynomial-time algorithm which they proved to be a 5-aproximation. We prove that this algorithm has approximation ratio 4, and show that this ratio is tight. We also present two integer linear formulations for this case, and report on the computational results obtained with this approach.
|
106 |
[en] TWO GRAPH OPTIMIZATION PROBLEMS: PIPELINE TRANSPORTATION AND SEARCHING WITH ACCESS COSTS / [pt] DOIS PROBLEMAS DE OTIMIZAÇÃO EM GRAFOS: TRANSPORTE EM REDES DE DUTOS E BUSCA COM CUSTOS DE ACESSOSARTUR ALVES PESSOA 07 January 2004 (has links)
[pt] Consideramos dois problemas de otimização combinatória: o
problema de transporte em redes de dutos (PTD) e o
problema
de busca com custos de acesso variados (PBC). No PTD, é
dado um grafo orientado G = (N,A) onde cada arco tem um
duto associado. Também é dado um conjunto de bateladas,
onde cada batelada está inicialmente em um nó ou arco do
grafo e tem um nó de destino. Algumas bateladas são
chamadas de proteláveis. O objetivo do PTD é encontrar
uma
sequência de operações que transporte todas as bateladas
não-proteláveis aos seus respectivos nós de destino.
Primeiro, demonstramos o PTD é NP-difícil, mesmo que o
grafo G seja acíclico. Em seguida, apresentamos um
algoritmo polinomial chamado de BPA. Este algoritmo
resolve
o PTDS, uma variação do PTD, para qualquer grafo G. Para
grafos acíclicos, o BPA minimiza uma função de custo
genérica. Para minimizar o makespan no PTDS, demonstramos
que não existe algoritmo polinomial n1-e - aproximado
para
nenhum E>0, a menos que P = NP, onde n é o tamanho da
instância. Este resultado também vale se G é acíclico e
planar. No PBC, são dados um vetor ordenado e o custo de
acessar cada um de seus n elementos. O objetivo do
problema
é encontrar uma estratégia de busca que minimize o custo
médio com probabilidades uniformes (PBCM) ou o custo do
pior caso (PBCN). Em ambos os casos, o melhor algoritmo
exato conhecido executa em tempo O(n3) e espaço O(n2).
Para
o PBCN, apresentamos o algoritmo da razão, que executa em
tempo O(n2) e espaço O(n). Este algoritmo sempre obtém
uma
solução de custo menor ou igual a 41n(n+1)/n, assumindo
que
a soma dos custos é 1. Além disso, desenvolvemos dois
algoritmos aproximados: um para o PBCM e outro para o
PBPC.
Ambos constroem soluções (2+E+0(1)) - aproximadas, para
qualquer E>0, em tempo e espaço O(n). / [en] We consider two combinatorial optimization problems the
pipeline transportation problem (PTD) and the problem of
searching with different access costs (PBC). In PTD, we are
given a directed graph G = (N,A) where each arc corresponds
to a pipeline. We are also given a set of batches, each
batch being initially located at an arc or node and having
a destination node. A subset of these batches are
considered as further batches. Our aim is to find a
sequence of pipeline operations leading all non-further
batches to their corresponding destination nodes. First, we
show that PDT is NP-hard, even for the case where G is
acyclic. Next, we present a polynomial algorithm called
BPA. This algorithm solves PTDS, a variation of PTD, for
general graphs. For acyclic graphs, BPA also minimizes a
general cost function. For the case of makespan
minimization for PTDS, we prove that there is no n1-e -
approximate algorithm for any E]0, unless P = NP, where n
is the instance size. The previous result also holds if G
is both ayclic and planar. In PBC, we are given an ordered
vector with n elements and the corresponding access costs.
Our aim is to find a search strategy that minimizes either
the average cost (PBPC). In both cases, the best known
exact algorithm requires in O(n3) time and O(n2) space. For
PBCM, we present the ratio algorithm, that requires O(n2)
time and O(n3)space. This algorithm always obtains a search
strategy with average cost at most 41n(n+1)/n, assuming the
sum of all access costs to be 1. Furthermore, we introduce
approximation algorithms for both PBCM and PBPC. Both of
them give (2+E+0(1)) - approximate solutions, for any E}0,
in O(n) time and space.
|
107 |
Big Networks: Analysis and Optimal ControlNguyen, Hung The 01 January 2018 (has links)
The study of networks has seen a tremendous breed of researches due to the explosive spectrum of practical problems that involve networks as the access point. Those problems widely range from detecting functionally correlated proteins in biology to finding people to give discounts and gain maximum popularity of a product in economics. Thus, understanding and further being able to manipulate/control the development and evolution of the networks become critical tasks for network scientists. Despite the vast research effort putting towards these studies, the present state-of-the-arts largely either lack of high quality solutions or require excessive amount of time in real-world `Big Data' requirement.
This research aims at affirmatively boosting the modern algorithmic efficiency to approach practical requirements. That is developing a ground-breaking class of algorithms that provide simultaneously both provably good solution qualities and low time and space complexities. Specifically, I target the important yet challenging problems in the three main areas:
Information Diffusion: Analyzing and maximizing the influence in networks and extending results for different variations of the problems.
Community Detection: Finding communities from multiple sources of information.
Security and Privacy: Assessing organization vulnerability under targeted-cyber attacks via social networks.
|
108 |
Optimization in Graphs under Degree Constraints. Application to Telecommunication NetworksSau, Ignasi 16 October 2009 (has links) (PDF)
La première partie de cette thèse s'intéresse au groupage de trafic dans les réseaux de télécommunications. La notion de groupage de trafic correspond à l'agrégation de flux de faible débit dans des conduits de plus gros débit. Cependant, à chaque insertion ou extraction de trafic sur une longueur d'onde il faut placer dans le noeud du réseau un multiplexeur à insertion/extraction (ADM). De plus il faut un ADM pour chaque longueur d'onde utilisée dans le noeud, ce qui représente un coût d'équipements important. Les objectifs du groupage de trafic sont d'une part le partage efficace de la bande passante et d'autre part la réduction du coût des équipements de routage. Nous présentons des résultats d'inapproximabilité, des algorithmes d'approximation, un nouveau modèle qui permet au réseau de pouvoir router n'importe quel graphe de requêtes de degré borné, ainsi que des solutions optimales pour deux scénarios avec trafic all-to-all: l'anneau bidirectionnel et l'anneau unidirectionnel avec un facteur de groupage qui change de manière dynamique. La deuxième partie de la thèse s'intéresse aux problèmes consistant à trouver des sous-graphes avec contraintes sur le degré. Cette classe de problèmes est plus générale que le groupage de trafic, qui est un cas particulier. Il s'agit de trouver des sous-graphes d'un graphe donné avec contraintes sur le degré, tout en optimisant un paramètre du graphe (très souvent, le nombre de sommets ou d'arêtes). Nous présentons des algorithmes d'approximation, des résultats d'inapproximabilité, des études sur la complexité paramétrique, des algorithmes exacts pour les graphes planaires, ainsi qu'une méthodologie générale qui permet de résoudre efficacement cette classe de problèmes (et de manière plus générale, la classe de problèmes tels qu'une solution peut être codé avec une partition d'un sous-ensemble des sommets) pour les graphes plongés dans une surface. Finalement, plusieurs annexes présentent des résultats sur des problèmes connexes.
|
109 |
Uncalibrated robotic visual servo tracking for large residual problemsMunnae, Jomkwun 17 November 2010 (has links)
In visually guided control of a robot, a large residual problem occurs when the robot configuration is not in the neighborhood of the target acquisition configuration. Most existing uncalibrated visual servoing algorithms use quasi-Gauss-Newton methods which are effective for small residual problems. The solution used in this study switches between a full quasi-Newton method for large residual case and the quasi-Gauss-Newton methods for the small case. Visual servoing to handle large residual problems for tracking a moving target has not previously appeared in the literature.
For large residual problems various Hessian approximations are introduced including an approximation of the entire Hessian matrix, the dynamic BFGS (DBFGS) algorithm, and two distinct approximations of the residual term, the modified BFGS (MBFGS) algorithm and the dynamic full Newton method with BFGS (DFN-BFGS) algorithm. Due to the fact that the quasi-Gauss-Newton method has the advantage of fast convergence, the quasi-Gauss-Newton step is used as the iteration is sufficiently near the desired solution. A switching algorithm combines a full quasi-Newton method and a quasi-Gauss-Newton method. Switching occurs if the image error norm is less than the switching criterion, which is heuristically selected.
An adaptive forgetting factor called the dynamic adaptive forgetting factor (DAFF) is presented. The DAFF method is a heuristic scheme to determine the forgetting factor value based on the image error norm. Compared to other existing adaptive forgetting factor schemes, the DAFF method yields the best performance for both convergence time and the RMS error.
Simulation results verify validity of the proposed switching algorithms with the DAFF method for large residual problems. The switching MBFGS algorithm with the DAFF method significantly improves tracking performance in the presence of noise. This work is the first successfully developed model independent, vision-guided control for large residual with capability to stably track a moving target with a robot.
|
110 |
Sub-Polyhedral Compilation using (Unit-)Two-Variables-Per-Inequality PolyhedraUpadrasta, Ramakrishna 13 March 2013 (has links) (PDF)
The goal of this thesis is to design algorithms that run with better complexity when compiling or parallelizing loop programs. The framework within which our algorithms operate is the polyhedral model of compilation which has been successful in the design and implementation of complex loop nest optimizers and parallelizing compilers. The algorithmic complexity and scalability limitations of the above framework remain one important weakness. We address it by introducing sub-polyhedral compilation by using (Unit-)Two-Variable-Per-Inequality or (U)TVPI Polyhedra, namely polyhedrawith restricted constraints of the type ax_{i}+bx_{j}\le c (\pm x_{i}\pm x_{j}\le c). A major focus of our sub-polyhedral compilation is the introduction of sub-polyhedral scheduling, where we propose a technique for scheduling using (U)TVPI polyhedra. As part of this, we introduce algorithms that can be used to construct under-aproximations of the systems of constraints resulting from affine scheduling problems. This technique relies on simple polynomial time algorithms to under approximate a general polyhedron into (U)TVPI polyhedra. The above under-approximation algorithms are generic enough that they can be used for many kinds of loop parallelization scheduling problems, reducing each of their complexities to asymptotically polynomial time. We also introduce sub-polyhedral code-generation where we propose algorithms to use the improved complexities of (U)TVPI sub-polyhedra in polyhedral code generation. In this problem, we show that the exponentialities associated with the widely used polyhedral code generators could be reduced to polynomial time using the improved complexities of (U)TVPI sub-polyhedra. The above presented sub-polyhedral scheduling techniques are evaluated in an experimental framework. For this, we modify the state-of-the-art PLuTo compiler which can parallelize for multi-core architectures using permutation and tiling transformations. We show that using our scheduling technique, the above under-approximations yield polyhedra that are non-empty for 10 out of 16 benchmarks from the Polybench (2.0) kernels. Solving the under-approximated system leads to asymptotic gains in complexity, and shows practically significant improvements when compared to a traditional LP solver. We also verify that code generated by our sub-polyhedral parallelization prototype matches the performance of PLuTo-optimized code when the under-approximation preserves feasibility.
|
Page generated in 0.0389 seconds