Spelling suggestions: "subject:"unteren schranken"" "subject:"unteren beschranken""
1 |
On Lower Bounds for Parity Branching Programs / On Lower Bounds for Parity Branching ProgramsHomeister, Matthias 15 October 2003 (has links)
No description available.
|
2 |
Untere Schranken für Steinerbaumalgorithmen und die Konstruktion von Bicliquen in dichten GraphenKirchner, Stefan 02 September 2008 (has links)
Die vorliegende Arbeit besteht aus zwei Teilen. Der erste Teil der Arbeit befasst sich mit unteren Schranken für approximative Steinerbaumalgorithmen. Ein Steinerbaum ist ein kürzester Teilgraph, der eine gegebene Teilmenge der Knoten eines Graphen spannt. Das Berechnen eines Steinerbaumes ist ein klassisches NP-schweres Problem, und es existieren mehrere Approximationsalgorithmen, wobei bei den meisten Algorithmen die Approximationsgüte nur durch untere und obere Schranken eingegrenzt werden kann. Für einige dieser Algorithmen werden in dieser Arbeit Instanzen vorgestellt, welche die unteren Schranken verbessern. Für den Relativen Greedy Algorithmus wird außerdem ein Verfahren vorgestellt, mit dem die Güte des Algorithmus eingeschränkt auf die Graphenklasse mit k Terminalen auf einen beliebigen Faktor genau bestimmt werden kann. Der zweite Teil der Arbeit widmet sich vollständig bipartiten Subgraphen mit gleicher Partitionsgrößse, sogenannten balancierten Bicliquen. Seit langem ist bekannt, dass in dichten bipartiten Graphen balancierte Bicliquen mit Omega(log(n)) Knoten existieren, aber es ist unbekannt, ob und wie diese in polynomieller Zeit konstruiert werden können. Der zweite Teil liefert dazu einen Beitrag, indem ein polynomieller Algorithmus vorgestellt wird, der in hinreichend großen dichten bipartiten Graphen eine balancierte Biclique mit Omega(sqrt(log(n))) Knoten konstruiert. / This thesis consists of two parts. The first part is concerned with lower bounds for approximating Steiner trees. The Steiner tree problem is to find a shortest subgraph that spans a given set of vertices in a graph and is a classical NP-hard problem. Several approximation algorithms exist, but for most algorithms only lower and upper bounds for the approximation ratio are known. For some of these algorithms we present instances which improve the lower bounds. When the problem is restricted to the class of graphs with k terminals, we also present a method which can be used to determine the approximation ratio of the Relative Greedy Algorithm with arbitrary precision. The second part is about balanced bicliques, i.e. complete bipartite subgraphs with equal partition sizes. It has been known for a long time that every dense bipartite graph contains a balanced biclique of size Omega(log(n)), but whether and how such a biclique can be constructed in polynomial time is still unknown. Our contribution to this problem is a polynomial time algorithm which constructs a balanced biclique of size Omega(sqrt(log(n))) in sufficiently large and dense bipartite graphs.
|
3 |
Obere und untere Schranken für eingeschränkte Parity-Branchingprogramme / Upper and Lower Bounds for Restricted Parity Branching ProgramsBrosenne, Henrik 18 April 2006 (has links)
No description available.
|
4 |
Fine-Grained Parameterized Algorithms on Width Parameters and BeyondHegerfeld, Falko 25 October 2023 (has links)
Die Kernaufgabe der parameterisierten Komplexität ist zu verstehen, wie Eingabestruktur die Problemkomplexität beeinflusst. Wir untersuchen diese Fragestellung aus einer granularen Perspektive und betrachten Problem-Parameter-Kombinationen mit einfach exponentieller Laufzeit, d.h., Laufzeit a^k n^c, wobei n die Eingabegröße ist, k der Parameterwert, und a und c zwei positive Konstanten sind. Unser Ziel ist es, die optimale Laufzeitbasis a für eine gegebene Kombination zu bestimmen. Für viele Zusammenhangsprobleme, wie Connected Vertex Cover oder Connected Dominating Set, ist die optimale Basis bezüglich dem Parameter Baumweite bekannt. Die Baumweite gehört zu der Klasse der Weiteparameter, welche auf natürliche Weise zu Algorithmen mit dem Prinzip der dynamischen Programmierung führen.
Im ersten Teil dieser Dissertation untersuchen wir, wie sich die optimale Laufzeitbasis für diverse Zusammenhangsprobleme verändert, wenn wir zu ausdrucksstärkeren Weiteparametern wechseln. Wir entwerfen neue parameterisierte Algorithmen und (bedingte) untere Schranken, um diese optimalen Basen zu bestimmen. Insbesondere zeigen wir für die Parametersequenz Baumweite, modulare Baumweite, und Cliquenweite, dass die optimale Basis von Connected Vertex Cover bei 3 startet, sich erst auf 5 erhöht und dann auf 6, wobei hingegen die optimale Basis von Connected Dominating Set bei 4 startet, erst bei 4 bleibt und sich dann auf 5 erhöht.
Im zweiten Teil gehen wir über Weiteparameter hinaus und analysieren restriktivere Arten von Parametern. Für die Baumtiefe entwerfen wir platzsparende Verzweigungsalgorithmen. Die Beweistechniken für untere Schranken bezüglich Weiteparametern übertragen sich nicht zu den restriktiveren Parametern, weshalb nur wenige optimale Laufzeitbasen bekannt sind. Um dies zu beheben untersuchen wir Knotenlöschungsprobleme. Insbesondere zeigen wir, dass die optimale Basis von Odd Cycle Transversal parameterisiert mit einem Modulator zu Baumweite 2 den Wert 3 hat. / The question at the heart of parameterized complexity is how input structure governs the complexity of a problem. We investigate this question from a fine-grained perspective and study problem-parameter-combinations with single-exponential running time, i.e., time a^k n^c, where n is the input size, k the parameter value, and a and c are positive constants. Our goal is to determine the optimal base a for a given combination. For many connectivity problems such as Connected Vertex Cover or Connecting Dominating Set, the optimal base is known relative to treewidth. Treewidth belongs to the class of width parameters, which naturally admit dynamic programming algorithms.
In the first part of this thesis, we study how the optimal base changes for these connectivity problems when going to more expressive width parameters. We provide new parameterized dynamic programming algorithms and (conditional) lower bounds to determine the optimal base, in particular, we obtain for the parameter sequence treewidth, modular-treewidth, clique-width that the optimal base for Connected Vertex Cover starts at 3, increases to 5, and then to 6, whereas the optimal base for Connected Dominating Set starts at 4, stays at 4, and then increases to 5.
In the second part, we go beyond width parameters and study more restrictive parameterizations like depth parameters and modulators. For treedepth, we design space-efficient branching algorithms. The lower bound techniques for width parameterizations do not carry over to these more restrictive parameterizations and as a result, only a few optimal bases are known. To remedy this, we study standard vertex-deletion problems. In particular, we show that the optimal base of Odd Cycle Transversal parameterized by a modulator to treewidth 2 is 3. Additionally, we show that similar lower bounds can be obtained in the realm of dense graphs by considering modulators consisting of so-called twinclasses.
|
5 |
On the numerical analysis of eigenvalue problemsGedicke, Joscha Micha 05 November 2013 (has links)
Die vorliegende Arbeit zum Thema der numerischen Analysis von Eigenwertproblemen befasst sich mit fünf wesentlichen Aspekten der numerischen Analysis von Eigenwertproblemen. Der erste Teil präsentiert einen Algorithmus von asymptotisch quasi-optimaler Rechenlaufzeit, der die adaptive Finite Elemente Methode mit einem iterativen algebraischen Eigenwertlöser kombiniert. Der zweite Teil präsentiert explizite beidseitige Schranken für die Eigenwerte des Laplace Operators auf beliebig groben Gittern basierend auf einer Approximation der zugehörigen Eigenfunktion in dem nicht konformen Finite Elemente Raum von Crouzeix und Raviart und einem Postprocessing. Die Effizienz der garantierten Schranke des Eigenwertfehlers hängt von der globalen Gitterweite ab. Der dritte Teil betrachtet eine adaptive Finite Elemente Methode basierend auf Verfeinerungen von Knoten-Patchen. Dieser Algorithmus zeigt eine asymptotische Fehlerreduktion der adaptiven Sequenz von einfachen Eigenwerten und Eigenfunktionen des Laplace Operators. Die hier erstmals bewiesene Eigenschaft der Saturation des Eigenwertfehlers zeigt Zuverlässigkeit und Effizienz für eine Klasse von hierarchischen a posteriori Fehlerschätzern. Der vierte Teil betrachtet a posteriori Fehlerschätzer für Konvektion-Diffusion Eigenwertprobleme, wie sie von Heuveline und Rannacher (2001) im Kontext der dual-gewichteten residualen Methode (DWR) diskutiert wurden. Zwei neue dual-gewichtete a posteriori Fehlerschätzer werden vorgestellt. Der letzte Teil beschäftigt sich mit drei adaptiven Algorithmen für Eigenwertprobleme von nicht selbst-adjungierten Operatoren partieller Differentialgleichungen. Alle drei Algorithmen basieren auf einer Homotopie-Methode die vom einfacheren selbst-adjungierten Problem startet. Neben der Gitterverfeinerung wird der Prozess der Homotopie sowie die Anzahl der Iterationen des algebraischen Löser adaptiv gesteuert und die verschiedenen Anteile am gesamten Fehler ausbalanciert. / This thesis "on the numerical analysis of eigenvalue problems" consists of five major aspects of the numerical analysis of adaptive finite element methods for eigenvalue problems. The first part presents a combined adaptive finite element method with an iterative algebraic eigenvalue solver for a symmetric eigenvalue problem of asymptotic quasi-optimal computational complexity. The second part introduces fully computable two-sided bounds on the eigenvalues of the Laplace operator on arbitrarily coarse meshes based on some approximation of the corresponding eigenfunction in the nonconforming Crouzeix-Raviart finite element space plus some postprocessing. The efficiency of the guaranteed error bounds involves the global mesh-size and is proven for the large class of graded meshes. The third part presents an adaptive finite element method (AFEM) based on nodal-patch refinement that leads to an asymptotic error reduction property for the adaptive sequence of simple eigenvalues and eigenfunctions of the Laplace operator. The proven saturation property yields reliability and efficiency for a class of hierarchical a posteriori error estimators. The fourth part considers a posteriori error estimators for convection-diffusion eigenvalue problems as discussed by Heuveline and Rannacher (2001) in the context of the dual-weighted residual method (DWR). Two new dual-weighted a posteriori error estimators are presented. The last part presents three adaptive algorithms for eigenvalue problems associated with non-selfadjoint partial differential operators. The basis for the developed algorithms is a homotopy method which departs from a well-understood selfadjoint problem. Apart from the adaptive grid refinement, the progress of the homotopy as well as the solution of the iterative method are adapted to balance the contributions of the different error sources.
|
6 |
Direct guaranteed lower eigenvalue bounds with quasi-optimal adaptive mesh-refinementPuttkammer, Sophie Louise 19 January 2024 (has links)
Garantierte untere Eigenwertschranken (GLB) für elliptische Eigenwertprobleme partieller Differentialgleichungen sind in der Theorie sowie in praktischen Anwendungen relevant. Auf Grund des Rayleigh-Ritz- (oder) min-max-Prinzips berechnen alle konformen Finite-Elemente-Methoden (FEM) garantierte obere Schranken. Ein Postprocessing nichtkonformer Methoden von Carstensen und Gedicke (Math. Comp., 83.290, 2014) sowie Carstensen und Gallistl (Numer. Math., 126.1, 2014) berechnet GLB. In diesen Schranken ist die maximale Netzweite ein globaler Parameter, das kann bei adaptiver Netzverfeinerung zu deutlichen Unterschätzungen führen. In einigen numerischen Beispielen versagt dieses Postprocessing für lokal verfeinerte Netze komplett. Diese Dissertation präsentiert, inspiriert von einer neuen skeletal-Methode von Carstensen, Zhai und Zhang (SIAM J. Numer. Anal., 58.1, 2020), einerseits eine modifizierte hybrid-high-order Methode (m=1) und andererseits ein allgemeines Framework für extra-stabilisierte nichtkonforme Crouzeix-Raviart (m=1) bzw. Morley (m=2) FEM. Diese neuen Methoden berechnen direkte GLB für den m-Laplace-Operator, bei denen eine leicht überprüfbare Bedingung an die maximale Netzweite garantiert, dass der k-te diskrete Eigenwert eine untere Schranke für den k-ten Dirichlet-Eigenwert ist. Diese GLB-Eigenschaft und a priori Konvergenzraten werden für jede Raumdimension etabliert. Der neu entwickelte Ansatz erlaubt adaptive Netzverfeinerung, die für optimale Konvergenzraten auch bei nichtglatten Eigenfunktionen erforderlich ist. Die Überlegenheit der neuen adaptiven FEM wird durch eine Vielzahl repräsentativer numerischer Beispiele illustriert. Für die extra-stabilisierte GLB wird bewiesen, dass sie mit optimalen Raten gegen einen einfachen Eigenwert konvergiert, indem die Axiome der Adaptivität von Carstensen, Feischl, Page und Praetorius (Comput. Math. Appl., 67.6, 2014) sowie Carstensen und Rabus (SIAM J. Numer. Anal., 55.6, 2017) verallgemeinert werden. / Guaranteed lower eigenvalue bounds (GLB) for elliptic eigenvalue problems of partial differential equation are of high relevance in theory and praxis. Due to the Rayleigh-Ritz (or) min-max principle all conforming finite element methods (FEM) provide guaranteed upper eigenvalue bounds. A post-processing for nonconforming FEM of Carstensen and Gedicke (Math. Comp., 83.290, 2014) as well as Carstensen and Gallistl (Numer. Math., 126.1,2014) computes GLB. However, the maximal mesh-size enters as a global parameter in the eigenvalue bound and may cause significant underestimation for adaptive mesh-refinement. There are numerical examples, where this post-processing on locally refined meshes fails completely. Inspired by a recent skeletal method from Carstensen, Zhai, and Zhang (SIAM J. Numer. Anal., 58.1, 2020) this thesis presents on the one hand a modified hybrid high-order method (m=1) and on the other hand a general framework for an extra-stabilized nonconforming Crouzeix-Raviart (m=1) or Morley (m=2) FEM. These novel methods compute direct GLB for the m-Laplace operator in that a specific smallness assumption on the maximal mesh-size guarantees that the computed k-th discrete eigenvalue is a lower bound for the k-th Dirichlet eigenvalue. This GLB property as well as a priori convergence rates are established in any space dimension. The novel ansatz allows for adaptive mesh-refinement necessary to recover optimal convergence rates for non-smooth eigenfunctions. Striking numerical evidence indicates the superiority of the new adaptive eigensolvers. For the extra-stabilized nonconforming methods (a generalization of) known abstract arguments entitled as the axioms of adaptivity from Carstensen, Feischl, Page, and Praetorius (Comput. Math. Appl., 67.6, 2014) as well as Carstensen and Rabus (SIAM J. Numer. Anal., 55.6, 2017) allow to prove the convergence of the GLB towards a simple eigenvalue with optimal rates.
|
7 |
Complexity of Normal Forms on Structures of Bounded DegreeHeimberg, Lucas 04 June 2018 (has links)
Normalformen drücken semantische Eigenschaften einer Logik durch syntaktische Restriktionen aus. Sie ermöglichen es Algorithmen, Grenzen der Ausdrucksstärke einer Logik auszunutzen. Ein Beispiel ist die Lokalität der Logik erster Stufe (FO), die impliziert, dass Graph-Eigenschaften wie Erreichbarkeit oder Zusammenhang nicht FO-definierbar sind. Gaifman-Normalformen drücken die Bedeutung einer FO-Formel als Boolesche Kombination lokaler Eigenschaften aus. Sie haben eine wichtige Rolle in Model-Checking Algorithmen für Klassen dünn besetzter Graphen, deren Laufzeit durch die Größe der auszuwertenden Formel parametrisiert ist. Es ist jedoch bekannt, dass Gaifman-Normalformen im Allgemeinen nur mit nicht-elementarem Aufwand konstruiert werden können. Dies führt zu einer enormen Parameterabhängigkeit der genannten Algorithmen. Ähnliche nicht-elementare untere Schranken sind auch für Feferman-Vaught-Zerlegungen und für die Erhaltungssätze von Lyndon, Łoś und Tarski bekannt.
Diese Arbeit untersucht die Komplexität der genannten Normalformen auf Klassen von Strukturen beschränkten Grades, für welche die nicht-elementaren unteren Schranken nicht gelten. Für diese Einschränkung werden Algorithmen mit elementarer Laufzeit für die Konstruktion von Gaifman-Normalformen, Feferman-Vaught-Zerlegungen, und für die Erhaltungssätze von Lyndon, Łoś und Tarski entwickelt, die in den ersten beiden Fällen worst-case optimal sind.
Wichtig hierfür sind Hanf-Normalformen. Es wird gezeigt, dass eine Erweiterung von FO durch unäre Zählquantoren genau dann Hanf-Normalformen erlaubt, wenn alle Zählquantoren ultimativ periodisch sind, und wie Hanf-Normalformen in diesen Fällen in elementarer und worst-case optimaler Zeit konstruiert werden können.
Dies führt zu Model-Checking Algorithmen für solche Erweiterungen von FO sowie zu Verallgemeinerungen der Algorithmen für Feferman-Vaught-Zerlegungen und die Erhaltungssätze von Lyndon, Łoś und Tarski. / Normal forms express semantic properties of logics by means of syntactical restrictions. They allow algorithms to benefit from restrictions of the expressive power of a logic. An example is the locality of first-order logic (FO), which implies that properties like reachability or connectivity cannot be defined in FO. Gaifman's local normal form expresses the satisfaction conditions of an FO-formula by a Boolean combination of local statements. Gaifman normal form serves as a first step in fixed-parameter model-checking algorithms, parameterised by the size of the formula, on sparse graph classes. However, it is known that in general, there are non-elementary lower bounds for the costs involved in transforming a formula into Gaifman normal form. This leads to an enormous parameter-dependency of the aforementioned algorithms. Similar non-elementary lower bounds also hold for Feferman-Vaught decompositions and for the preservation theorems by Lyndon, Łoś, and Tarski.
This thesis investigates the complexity of these normal forms when restricting attention to classes of structures of bounded degree, for which the non-elementary lower bounds are known to fail. Under this restriction, the thesis provides
algorithms with elementary and even worst-case optimal running time for the construction of Gaifman normal form and Feferman-Vaught decompositions. For the preservation theorems, algorithmic versions with elementary running time and non-matching lower bounds are provided.
Crucial for these results is the notion of Hanf normal form. It is shown that an extension of FO by unary counting quantifiers allows Hanf normal forms if, and only if, all quantifiers are ultimately periodic, and furthermore, how Hanf normal form can be computed in elementary and worst-case optimal time in these cases. This leads to model-checking algorithms for such extensions of FO and also allows generalisations of the constructions for Feferman-Vaught decompositions and preservation theorems.
|
Page generated in 0.0672 seconds