• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 25
  • 12
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 96
  • 96
  • 30
  • 27
  • 21
  • 21
  • 19
  • 19
  • 18
  • 17
  • 17
  • 16
  • 16
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Estimação de probabilidade de colisão com obstáculos móveis para navegação autônoma / Mobile obstacle collision probability estimation for autonomous navigation

Felipe Taha Sant\'Ana 01 July 2015 (has links)
Na área de robótica móvel autônoma é importante que o robô siga uma trajetória livre de obstáculos. Estes podem ser desde obstáculos estáticos, como paredes e cadeiras em um ambiente interno, ou mesmo obstáculos móveis, como pessoas caminhando na calçada e carros passando pela rua, quando consideramos ambientes externos. No caso de um ambiente estático, o problema pode ser resolvido planejando uma trajetória livre de colisões, sendo que não é necessário um replanejamento se todos os obstáculos estáticos foram considerados. Para ambientes onde os obstáculos estão em constante movimento, é necessário um constante replanejamento da trajetória para que se evite colisões. Alternativamente, pode ser verificada a possibilidade de se manter na rota planejada, alterando apenas a velocidade de cruzeiro do robô para que este desvie dos obstáculos móveis. Este trabalho propõe uma metodologia para calcular uma velocidade de cruzeiro para o robô de forma a minimizar a probabilidade de colisão com os obstáculos detectados pelos seus sensores. A escolha da variação de velocidade para o robô considera a sua velocidade atual, e as velocidades estimadas para os obstáculos. A metodologia para resolução deste problema é apresentada considerando incertezas na posição do robô e obstáculos. São apresentados resultados de simulação que exemplificam a aplicação da metodologia. / Following a free path is an important issue in the area of autonomous mobile robotics. The obstacles can be anything from walls and chairs in an indoor environment, or they can also be people walking on the sidewalk and cars moving through the street. In the case of a static environment, the problem can be solved by planning a path free from collisions, thus it is not essential another path planning as all static obstacles were considered. For an environment were the obstacles are constantly moving, it is necessary an unceasing path replanning to avoid possible collisions. Alternatively, keeping the robot on the previously calculated path can be verified modifying the robot\'s traffic velocity to avoid moving obstacles. Our proposal is to calculate a velocity for the robot which minimizes its collision probability with moving obstacles detected by its sensors. Varying the robot\'s velocity takes into account its current velocity and the estimated velocities of obstacles. The methodology for solving this problem is presented regarding uncertainties in robots and obstacles\' positions. Results from simulations that exemplifies an application for the methodology are presented.
62

Estratégias inteligentes aplicadas em robôs móveis autônomos e em coordenação de grupos de robôs / Intelligent strategies applied to autonomous mobile robots and groups of robots

Pessin, Gustavo 05 April 2013 (has links)
O contínuo aumento da complexidade no controle de sistemas robóticos, bem como a aplicação de grupos de robôs auxiliando ou substituindo seres humanos em atividades críticas tem gerado uma importante demanda por soluções mais robustas, flexíveis, e eficientes. O desenvolvimento convencional de algoritmos especializados, constituídos de sistemas baseados em regras e de autômatos usados para coordenar estes conjuntos físicos em um ambiente dinâmico é um desafio extremamente complexo. Diversos modelos de desenvolvimento existem, entretanto, muitos desafios da área da robótica móvel autônoma continuam em aberto. Esta tese se insere no contexto da busca por soluções inteligentes a serem aplicadas em robôs móveis autônomos com o objetivo de permitir a operação destes em ambientes dinâmicos. Buscamos, com a investigação e aplicação de estratégias inteligentes por meio de aprendizado de máquina no funcionamento dos robôs, a proposta de soluções originais que permitam uma nova visão sobre a operação de robôs móveis em três dos desafios da área da robótica móvel autônoma, que são: localização, navegação e operações com grupos de robôs. As pesquisas sobre localização e coordenação de grupos apresentam investigação e propostas originais, buscando estender o estado da arte, onde apresentam resultados inovadores. A parte sobre navegação tem como objetivo principal ser um elo entre os conceitos de localização e coordenação de grupos, sendo o foco o desenvolvimento de um veículo autônomo com maior implicação em avanços técnicos. Relacionado com a coordenação de grupos de robôs, fizemos a escolha de trabalhar sobre uma aplicação modelada como o problema de combate a incêndios florestais. Buscamos desenvolver um ambiente de simulação realístico, onde foram avaliadas quatro técnicas para busca de iii estratégias de formação do grupo: Algoritmos Genéticos, Otimização por Enxame de Partículas, Hill Climbing e (iv) Simulated Annealing. Com base nas diversas avaliações realizadas pudemos mostrar quais das técnicas e conjuntos de parâmetros permitem a obtenção de resultados mais acurados que os demais. Além disso, mostramos como uma heurística baseada em populações anteriores pode auxiliar na tolerância a falhas da operação. Relacionado com a tarefa de navegação, apresentamos o desenvolvimento de um veículo autônomo de grande porte funcional para ambientes externos. Buscamos aperfeiçoar uma arquitetura para navegação autônoma, baseada em visão monocular e com capacidade de seguir pontos esparsos de GPS. Mostramos como a simulação e os usos de robôs de pequeno porte auxiliaram no desenvolvimento do veículo de grande porte e apresentamos como as redes neurais podem ser aplicadas nos modelos de navegação autônoma. Na investigação sobre localização, mostramos um método utilizando informação obtida de redes sem fio para prover informação de localização para robôs móveis. As informações obtidas da rede sem fio são utilizadas para aprendizado da posição de um robô móvel por meio de uma rede neural. Diversas avaliações foram realizadas buscando entender o comportamento do sistema com diferentes números de pontos de acesso, com uso de filtros, com diferentes topologias. Os resultados mostram que o modelo usando redes sem fio pode ser um possível método prático e barato para localização de robôs móveis. Esta tese aborda temas relevantes e propostas originais relacionadas com os objetivos propostos, apresentando métodos que provenham autonomia na coordenação de grupos e nas atividades individuais dos mesmos. A busca por altos graus de eficiência na resolução de tarefas em ambientes dinâmicos ainda é um campo que carece de soluções e de um aprofundamento nas pesquisas. Sendo assim, esta pesquisa buscou agregar diversos avanços científicos na área de pesquisa de robôs móveis autônomos e coordenação de grupos, por meio da aplicação de estratégias inteligentes / The constant increasing of the complexity in the control of robotic systems, as well as the application of groups of robots assisting or replacing human beings in critical activities has generated a significant demand for more robust, flexible and efficient solutions. The conventional development of specialized algorithms consisted of rule-based systems and automatas, used to coordinate these physical sets in a dynamic environment is an extremely complex challenge. Although several models of development of robotic issues are currently in use, many challenges in the area remain open. This thesis is related to the search for intelligent strategies to be applied in autonomous mobile robots in order to allow practical operations in dynamic environments. We seek, with the investigation of intelligent strategies by means of the use of machine learning in the robots, to propose original solutions to allow contributions in three challenges of the robotic research area: localization, navigation and coordination of groups of robots. The investigations about localization and groups of robots show novel and original proposals, where we sought to extend the state of the art. The navigation part has as its major objective to be a link between the subjects of localization and navigation, being its aim to help the deployment of a autonomous vehicle implying in greater technical advances. Related to the robotic group coordination, we have made the choice to work on an application modeled as a wildfire combat operation. We have developed a simulation environment in which we have evaluated four techniques to obtain strategies for the group formation: genetic algorithms, particle swarm optimization, hill climbing and simulated annealing. The v results showed that we can have very different accuracy with different techniques and sets of parameters. Furthermore, we show how a heuristic based on the use of past populations can assist in fault tolerant operation. Related to the autonomous navigation task, we present the development of a large autonomous vehicle capable of operating in outdoor environments. We sought to optimize an architecture for autonomous navigation based on monocular vision and with the ability to follow scattered points of GPS.We show how the use of simulation and small robots could assist in the development of large vehicle. Furthermore, we show how neural networks can be applied as a controller to autonomous navigation systems. In the investigation about localization, we presented a method using wireless networks to provide information about localization to mobile robots. The information gathered by the wireless network is used as input in an artificial neural network which learns the position of the robot. Several evaluations were carried out in order to understand the behavior of the proposed system, as using different topologies, different numbers of access points and the use of filters. Results showed that the proposed system, using wireless networks and neural networks, may be a useful and easy to use solution for localization of mobile robots. This thesis has addressed original and relevant topics related to the proposed objectives, showing methods to allow degrees of autonomy in robotic operations. The search for higher degrees of efficiency in tasks solving in dynamic environments is still a field that lacks solutions. Therefore, this study sought to add several scientific contributions in the autonomous mobile robots research area and coordination of groups, by means of the application of intelligent strategies
63

Vision-Based Navigation for a Small Fixed-Wing Airplane in Urban Environment

Hwangbo, Myung 01 May 2012 (has links)
An urban operation of unmanned aerial vehicles (UAVs) demands a high level of autonomy for tasks presented in a cluttered environment. While fixed-wing UAVs are well suited for long-endurance missions at a high altitude, enabling them to navigate inside an urban area brings another level of challenges. Their inability to hover and low agility in motion cause more difficulties on finding a feasible path to move safely in a compact region, and the limited payload allows only low-grade sensors for state estimation and control. We address the problem of achieving vision-based autonomous navigation for a small fixed-wing in an urban area with contributions to the following several key topics. Firstly, for robust attitude estimation during dynamic maneuvering, we take advantage of the line regularity in an urban scene, which features vertical and horizontal edges of man-made structures. The sensor fusion with gravity-related line segments and gyroscopes in a Kalman filter can provide driftless and realtime attitude for ight stabilization. Secondly, as a prerequisite to sensor fusion, we present a convenient self-calibration scheme based on the factorization method. Natural references such as gravity, vertical edges, and distant scene points, available in urban fields, are sufficient to find intrinsic and extrinsic parameters of inertial and vision sensors. Lastly, to generate a dynamically feasible motion plan, we propose a discrete planning method that encodes a path into interconnections of finite trim states, which allow a significant dimension reduction of a search space and result in naturally implementable paths integrated with ight controllers. The most probable path to reach a target is computed by the Markov Decision Process with motion uncertainty due to wind, and a minimum target observation time is imposed on the final motion plan to consider a camera's limited field-of-view. In this thesis, the effectiveness of our vision-based navigation system is demonstrated by what we call an "air slalom" task in which the UAV must autonomously search and localize multiple gates, and pass through them sequentially. Experiment results with a 1m wing-span airplane show essential navigation capabilities demanded in urban operations such as maneuvering passageways between buildings.
64

Optimisation de la navigation robotique / Optimization of robotic navigation

Jalel, Sawssen 16 December 2016 (has links)
La robotique mobile autonome est un axe de recherche qui vise à donner à une machine la capacité de se mouvoir dans un environnement sans assistance ni intervention humaine. Cette thèse s’intéresse à la partie décisionnelle de la navigation robotique à savoir la planification de mouvement pour un robot mobile non-holonome, pour lequel, la prise en compte des contraintes cinématiques et non-holonomes est primordiale. Aussi, la nécessité de considérer la géométrie propre du robot et la bonne maîtrise de l’environnement dans lequel il évolue constituent des contraintes à assurer. En effet la planification de mouvement consiste à calculer un mouvement réalisable que doit accomplir le robot entre une position initiale et une position finale données. Selon la nature de l’environnement, notamment les obstacles qui s’y présentent, deux instances du problème se distinguent : la planification de chemin et la planification de trajectoire. L’objectif de cette thèse est de proposer de nouveaux algorithmes pour contribuer aux deux instances du problème de planification de mouvement. La méthodologie suivie repose sur des solutions génériques qui s’appliquent à une classe de systèmes robotiques plutôt qu’à une architecture particulière. Les approches proposées intègrent les B-splines Rationnelles non uniformes (NURBS) dans le processus de modélisation des solutions générées tout en s’appuyant sur la propriété de contrôle local, et utilisent les algorithmes génétiques pour une meilleure exploration de l’espace de recherche. / The mobile robotics is an area of research that aims to give a machine the ability to move in an environment without assistance or human intervention. This thesis focuses on the decisional part of robotic navigation, namely motion planning for a non-holonomic mobile robot, for which, the consideration of kinematic and non-holonomic constraints is paramount. Also, the need to consider the specific geometry of the robot and the good control of the environment in which it operates are constraints to insure. Indeed, motion planning is to calculate a feasible movement to be performed by the robot between an initial and a final given position. Depending on the nature of the environment, two instances of the problem stand out: the path planning and the trajectory planning. The objective of this thesis is to propose new algorithms to contribute to the two instances of motion planning problem. The followed methodology is based on generic solutions that are applicable to a class of robotic systems rather than a particular architecture. The proposed approaches include the Non-Uniform Rational B-Spline (NURBS) in the modeling process of the generated solutions while relying on the local control property. Also, they use genetic algorithms for better exploration of the search space.
65

User Intention Estimation for Semi-Autonomous Navigation of a Robotic Wheelchair / Estimation des Intentions de l'utilisateur pour la navigation semi-autonome d'un fauteuil roulant robotique

Escobedo-Cabello, Jesús-Arturo 03 October 2014 (has links)
L'auteur n'a pas fourni de résumé en français / This thesis focuses on semi-autonomous wheelchair navigation. We aim to design asystem respecting the following constraints.Safety: The system must avoid collisions with objects and specially with humans present in the scene.Usability: People with motor disabilities and elders often have problems using joysticks and other standard control devices. The use of more sophisticated and human-like ways of interacting with the robot must be addressed to improve the acceptance and comfort for the user. It is also considered that the user could just be able to move one finger and so the request of human intervention should be as reduced as possible to accomplish the navigation task.Compliance:} The robot must navigate securely among obstacles while reducing the frustration caused to the user by taking into account his intentions at different levels; final destination, preferred path, speed etc.Respect of social conventions: When moving, the robot may considerably disturb people around it, especially when its behavior is perceived as unsocial. It is thus important to produce socially acceptable motion to reduce disturbances. We will also addresses the issue of determining those places where the robot should be placed in order become part of an interacting group.In this work we propose to estimate the user's intention in order to reduce thenumber of necessary commands to drive a robotic wheelchair and deal withambiguous or inaccurate input interfaces. In this way, the wheelchair can be incharge of some part of the navigation task and alleviate the user involvement.The proposed system takes into account the user intention in terms of the finaldestination and desired speed. At each level, the method tries to favor themost ``reasonable'' action according to the inferred user intention.The user intention problem is approached by using a model of the user based onthe hypothesis that it is possible to learn typical destinations (those wherethe user spends most of his time) and use this information to enhance theestimation of the destination targeted by the user when he is driving therobotic wheelchair.A probabilistic framework is used to model the existent relationship betweenthe intention of the user and the observed command. The main originality of theapproach relies on modeling the user intentions as typical destinations and theuse of this estimation to check the reliability of a user's command to decidehow much preeminence it should be assigned by the shared controller whenmanaging the robot's speed.The proposed shared-control navigation system considers the direction of thecommands given by the user, the obstacles detected by the robot and the inferreddestination to correct the robot's velocity when necessary. This system is basedon the dynamic window approach modified to consider the input given by the user,his intention, the obstacles and the wheelchair's dynamic constraints tocompute the appropriate velocity command.All of the results obtained in this thesis have been implemented and validatedwith experiments, using both real and simulated data. Real data has beenobtained on two different scenarios; one was at INRIA's entry hall and the otherat the experimental apartment GERHOME.
66

Le Robot mobile compagnon : De l'apprentissage interactif vers un modèle d'IHM intuitive. / a companion mobile robot : from interactive learning to intuitive HMI modeling

Lesueur-Grand, Caroline 26 January 2017 (has links)
Dans le cadre de cette thèse, nous abordons les problèmes liés à un robot autonome devant apprendre différentes tâches sensori-motrices dans des situations d’interaction et d’imitation. D’un point de vue théorique et dans le cadre des Interactions Homme-Machine (IHM), nous aborderons notamment les notions liées aux phénomènes d’entraînement rythmiques, de coordination interpersonnelle et de synchronisation intentionnelles et non-intentionnelles qui jouent un rôle important dans les interactions sociales. En particulier nous défendons l’hypothèse que des mécanismes d’entrainement rythmiques facilitent grandement l’apprentissage dans des situations d’interactions Homme-Robot. Leur prise en compte dans la conception de nouvelles IHMs est primordiale pour les rendre plus « intuitives ». A long terme, nous aimerions que le robot puisse utiliser ces signaux sociaux pour comprendre les intentions de son partenaire.L’utilisation d’une tâche complexe est ici nécessaire pour que le robot soit confronté à des situations d’échecs qui devront introduire des modifications de comportement non seulement de la part du partenaire mais aussi et surtout de la part du robot. Ces situations introduiront des modifications du rythme dans l’interaction au cours de l'apprentissage. Pour réussir ce pari, le robot devra être capable d’auto évaluer à la fois son comportement vis à vis de la tâche en cours d’exécution (et d’apprentissage) et son comportement d’interaction avec son partenaire.Nous proposons de travailler sur un « robot mobile compagnon » capable d’apprendre de manière interactive (avec son compagnon) à naviguer. L’utilisation de jeux d’interaction et d’imitation comme moyen d’apprentissage mais surtout de communication permet d’envisager de nouveaux principes d’IHM (Interface Homme-Machine) où l’interaction n’est plus considérée comme une « charge », elle devient au contraire plaisante. / In this thesis, we address the issues related to autonomous learning of different sensory-motor tasks using interaction and imitation. From a theoretical point of view and considering Human Machine Interaction (HMI), we will question the concepts linked to rhythmic entrainment, interpersonal coordination, and also intentional and unintentional synchronisations and their contribution to improve social interactions. Particularly, these mechanisms facilitate human-human interactions. Consequently, we defend the idea that taking them into account is essential to build more intuitive HMI.  In near future applications,  we would like to make the robot able to use these signals to improve its understanding the human partner intentions.Using a complex task is, then, necessary to confront the robot to failures that will introduce behavioral changes for both the human and the robot agents. These situations will introduce interaction rhythm modifications during learning phases. In this aim, the robot should be able to self assess its behavior regarding both the current task to learn and its interaction with its partner.We propose to work on a 'mobile companion robot' able to learn interactively (with its partner) to navigate. Using interaction games and imitation as a medium of learning and above all of communication, allows to consider new principles of HMI (Human Machine Interface) where the interaction is no longer considered as a 'load', it becomes rather pleasant.
67

Navegação autônoma para robôs móveis usando aprendizado supervisionado. / Autonomous navigation for mobile robots using supervised learning

Jefferson Rodrigo de Souza 21 March 2014 (has links)
A navegação autônoma é um dos problemas fundamentais na área da robótica móvel. Algoritmos capazes de conduzir um robô até o seu destino de maneira segura e eficiente são um pré-requisito para que robôs móveis possam executar as mais diversas tarefas que são atribuídas a eles com sucesso. Dependendo da complexidade do ambiente e da tarefa que deve ser executada, a programação de algoritmos de navegação não é um problema de solução trivial. Esta tese trata do desenvolvimento de sistemas de navegação autônoma baseados em técnicas de aprendizado supervisionado. Mais especificamente, foram abordados dois problemas distintos: a navegação de robôs/- veículos em ambientes urbanos e a navegação de robôs em ambientes não estruturados. No primeiro caso, o robô/veículo deve evitar obstáculos e se manter na via navegável, a partir de exemplos fornecidos por um motorista humano. No segundo caso, o robô deve identificar e evitar áreas irregulares (maior vibração), reduzindo o consumo de energia. Nesse caso, o aprendizado foi realizado a partir de informações obtidas por sensores. Em ambos os casos, algoritmos de aprendizado supervisionado foram capazes de permitir que os robôs navegassem de maneira segura e eficiente durante os testes experimentais realizados / Autonomous navigation is a fundamental problem in the field of mobile robotics. Algorithms capable of driving a robot to its destination safely and efficiently are a prerequisite for mobile robots to successfully perform different tasks that may be assigned to them. Depending on the complexity of the environment and the task to be executed, programming of navigation algorithms is not a trivial problem. This thesis approaches the development of autonomous navigation systems based on supervised learning techniques. More specifically, two distinct problems have been addressed: a robot/vehicle navigation in urban environments and robot navigation in unstructured environments. In the first case, the robot/vehicle must avoid obstacles and keep itself in the road based on examples provided by a human driver. In the second case, the robot should identify and avoid unstructured areas (higher vibration), reducing energy consumption. In this case, learning was based on information obtained by sensors. In either case, supervised learning algorithms have been capable of allowing the robots to navigate in a safe and efficient manner during the experimental tests
68

Estratégias inteligentes aplicadas em robôs móveis autônomos e em coordenação de grupos de robôs / Intelligent strategies applied to autonomous mobile robots and groups of robots

Gustavo Pessin 05 April 2013 (has links)
O contínuo aumento da complexidade no controle de sistemas robóticos, bem como a aplicação de grupos de robôs auxiliando ou substituindo seres humanos em atividades críticas tem gerado uma importante demanda por soluções mais robustas, flexíveis, e eficientes. O desenvolvimento convencional de algoritmos especializados, constituídos de sistemas baseados em regras e de autômatos usados para coordenar estes conjuntos físicos em um ambiente dinâmico é um desafio extremamente complexo. Diversos modelos de desenvolvimento existem, entretanto, muitos desafios da área da robótica móvel autônoma continuam em aberto. Esta tese se insere no contexto da busca por soluções inteligentes a serem aplicadas em robôs móveis autônomos com o objetivo de permitir a operação destes em ambientes dinâmicos. Buscamos, com a investigação e aplicação de estratégias inteligentes por meio de aprendizado de máquina no funcionamento dos robôs, a proposta de soluções originais que permitam uma nova visão sobre a operação de robôs móveis em três dos desafios da área da robótica móvel autônoma, que são: localização, navegação e operações com grupos de robôs. As pesquisas sobre localização e coordenação de grupos apresentam investigação e propostas originais, buscando estender o estado da arte, onde apresentam resultados inovadores. A parte sobre navegação tem como objetivo principal ser um elo entre os conceitos de localização e coordenação de grupos, sendo o foco o desenvolvimento de um veículo autônomo com maior implicação em avanços técnicos. Relacionado com a coordenação de grupos de robôs, fizemos a escolha de trabalhar sobre uma aplicação modelada como o problema de combate a incêndios florestais. Buscamos desenvolver um ambiente de simulação realístico, onde foram avaliadas quatro técnicas para busca de iii estratégias de formação do grupo: Algoritmos Genéticos, Otimização por Enxame de Partículas, Hill Climbing e (iv) Simulated Annealing. Com base nas diversas avaliações realizadas pudemos mostrar quais das técnicas e conjuntos de parâmetros permitem a obtenção de resultados mais acurados que os demais. Além disso, mostramos como uma heurística baseada em populações anteriores pode auxiliar na tolerância a falhas da operação. Relacionado com a tarefa de navegação, apresentamos o desenvolvimento de um veículo autônomo de grande porte funcional para ambientes externos. Buscamos aperfeiçoar uma arquitetura para navegação autônoma, baseada em visão monocular e com capacidade de seguir pontos esparsos de GPS. Mostramos como a simulação e os usos de robôs de pequeno porte auxiliaram no desenvolvimento do veículo de grande porte e apresentamos como as redes neurais podem ser aplicadas nos modelos de navegação autônoma. Na investigação sobre localização, mostramos um método utilizando informação obtida de redes sem fio para prover informação de localização para robôs móveis. As informações obtidas da rede sem fio são utilizadas para aprendizado da posição de um robô móvel por meio de uma rede neural. Diversas avaliações foram realizadas buscando entender o comportamento do sistema com diferentes números de pontos de acesso, com uso de filtros, com diferentes topologias. Os resultados mostram que o modelo usando redes sem fio pode ser um possível método prático e barato para localização de robôs móveis. Esta tese aborda temas relevantes e propostas originais relacionadas com os objetivos propostos, apresentando métodos que provenham autonomia na coordenação de grupos e nas atividades individuais dos mesmos. A busca por altos graus de eficiência na resolução de tarefas em ambientes dinâmicos ainda é um campo que carece de soluções e de um aprofundamento nas pesquisas. Sendo assim, esta pesquisa buscou agregar diversos avanços científicos na área de pesquisa de robôs móveis autônomos e coordenação de grupos, por meio da aplicação de estratégias inteligentes / The constant increasing of the complexity in the control of robotic systems, as well as the application of groups of robots assisting or replacing human beings in critical activities has generated a significant demand for more robust, flexible and efficient solutions. The conventional development of specialized algorithms consisted of rule-based systems and automatas, used to coordinate these physical sets in a dynamic environment is an extremely complex challenge. Although several models of development of robotic issues are currently in use, many challenges in the area remain open. This thesis is related to the search for intelligent strategies to be applied in autonomous mobile robots in order to allow practical operations in dynamic environments. We seek, with the investigation of intelligent strategies by means of the use of machine learning in the robots, to propose original solutions to allow contributions in three challenges of the robotic research area: localization, navigation and coordination of groups of robots. The investigations about localization and groups of robots show novel and original proposals, where we sought to extend the state of the art. The navigation part has as its major objective to be a link between the subjects of localization and navigation, being its aim to help the deployment of a autonomous vehicle implying in greater technical advances. Related to the robotic group coordination, we have made the choice to work on an application modeled as a wildfire combat operation. We have developed a simulation environment in which we have evaluated four techniques to obtain strategies for the group formation: genetic algorithms, particle swarm optimization, hill climbing and simulated annealing. The v results showed that we can have very different accuracy with different techniques and sets of parameters. Furthermore, we show how a heuristic based on the use of past populations can assist in fault tolerant operation. Related to the autonomous navigation task, we present the development of a large autonomous vehicle capable of operating in outdoor environments. We sought to optimize an architecture for autonomous navigation based on monocular vision and with the ability to follow scattered points of GPS.We show how the use of simulation and small robots could assist in the development of large vehicle. Furthermore, we show how neural networks can be applied as a controller to autonomous navigation systems. In the investigation about localization, we presented a method using wireless networks to provide information about localization to mobile robots. The information gathered by the wireless network is used as input in an artificial neural network which learns the position of the robot. Several evaluations were carried out in order to understand the behavior of the proposed system, as using different topologies, different numbers of access points and the use of filters. Results showed that the proposed system, using wireless networks and neural networks, may be a useful and easy to use solution for localization of mobile robots. This thesis has addressed original and relevant topics related to the proposed objectives, showing methods to allow degrees of autonomy in robotic operations. The search for higher degrees of efficiency in tasks solving in dynamic environments is still a field that lacks solutions. Therefore, this study sought to add several scientific contributions in the autonomous mobile robots research area and coordination of groups, by means of the application of intelligent strategies
69

Sistemas computacionais bio-inspirados : sintese e aplicação em inteligencia computacional e homeostase artificial / Bioinspired computing systems : synthesis and application in computational intelligence and artificial homeostasis

Vargas, Patricia Amancio 15 April 2005 (has links)
Orientadores: Fernando Jose Von Zuben, Leandro Nunes de Castro Silva / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e Computação / Made available in DSpace on 2018-08-06T14:08:06Z (GMT). No. of bitstreams: 1 Vargas_PatriciaAmancio_D.pdf: 4626705 bytes, checksum: b203a58e3f5f1c613db0787b3e396196 (MD5) Previous issue date: 2005 / Resumo: Este trabalho propõe uma classificação circunstancial para sistemas complexos, incluindo uma estrutura unificada de descrição a ser empregada na análise e síntese de sistemas computacionais bio-inspirados. Como um ramo dos sistemas complexos organizados, os sistemas computacionais bio-inspirados admitem uma sub-divisão em sistemas de inteligência computacional e sistemas homeostáticos artificiais. Com base neste formalismo, duas abordagens híbridas são concebidas e aplicadas em problemas de navegação autônoma de robôs. A primeira abordagem envolve sistemas classificadores com aprendizado e sistemas imunológicos artificiais, visando explorar conjuntamente conceitos intrínsecos a sistemas complexos, como auto-organização, evolução e cognição dinâmica. Fundamentada nas interações neuro-imuno-endócrinas do corpo humano, a segunda abordagem propõe um novo modelo de sistema homeostático artificial, explorando mudanças de contexto e efeitos do meio sobre o comportamento autônomo de um robô móvel. Embora preliminares, os resultados obtidos envolvem simulação computacional em ambientes virtuais e alguns experimentos com robôs reais, permitindo extrair conclusões relevantes acerca do potencial das abordagens propostas e abrindo perspectivas para a síntese de sistemas complexos adaptativos de interesse prático / Abstract: This work proposes a circumstantial classification for complex systems, including a unified description structure to be employed in the analysis and synthesis of biologically inspired computing metaphors. Considered as a branch of organized complex systems, these bio-inspired computing frameworks may be subdivided into computation intelligence systems and artificial homeostatic systems. Developed under this formalism, two novel hybrid systems are conceived and applied to robot autonomous navigation problems. The first approach involves learning classifier systems and artificial immune systems, in an attempt to investigate intrinsic concepts of complex systems as self-organization, evolution, and dynamic cognition. Drawn on the principles of the human nervous, immune and endocrine systems, the second approach envisages a new model of an artificial homeostatic system to explore context changes and environmental effects on the behaviour of an autonomous robotic agent. Though preliminary, the obtained results encompass computer simulation on virtual environments in addition to a number of real robot¿s experiments. Relevant conclusions can be invoked, mainly related to the potentiality of the proposed frameworks, thus opening attractive prospects for the synthesis of complex adaptive systems of practical interest / Doutorado / Engenharia de Computação / Doutor em Engenharia Elétrica
70

Détection, localisation et suivi des obstacles et objets mobiles à partir d'une plate forme de stéréo-vision / Detection, localisation and tracking of obstacles and moving objects, from a stereovision setup

Lefaudeux, Benjamin 30 September 2013 (has links)
Cette thèse s'inscrit dans la problématique de la perception des véhicules autonomes, qui doivent notamment être capables de détecter et de positionner à tout moment les éléments fixes et mobiles de leur environnement. Les besoins sont ensuite multiples, de la détection d'obstacles à la localisation du porteur dans l'espace, et de nombreuses méthodes de la littérature s'y attellent. L'objectif de cette thèse est de reconstituer, à partir de prises de vues de stéréo-vision, une carte en trois dimensions décrivant l'environnement proche ; tout en effectuant une détection, localisation et suivi dans le temps des objets mobiles.La détection et le suivi dans le temps d'un grand nombre de points d'intérêt constitue une première étape. Après avoir effectué une comparaison exhaustive de divers détecteurs de points d'intérêt de la littérature, on propose pour réaliser le suivi de points une implémentation massivement parallélisée de l'algorithme KLT, dans une configuration redondante réalisée pendant cette thèse. Cette implémentation autorise le suivi fiable de milliers de points en temps réel, et se compare favorablement à l'état de l'art.Il s'agit ensuite d'estimer le déplacement du porteur, et de positionner ces points dans l'espace, tâche pour laquelle on propose une évolution robuste d'une procédure bien connue, dite "SVD", suivie d'un filtrage par UKF, qui nous permettent d'estimer très rapidement le mouvement propre du porteur. Les points suivis sont ensuite positionnés dans l'espace, en prenant en compte leur possible mobilité, en estimant continuellement la position la plus probable compte tenu des observations successives.La détection et le suivi des objets mobiles font l'objet d'une dernière partie, dans laquelle on propose une segmentation originale tenant compte des aspects de position et de vitesse. On exploite ainsi une des singularités de notre approche, qui conserve pour chaque point positionné un ensemble cohérent de positions dans le temps. Le filtrage et le suivi des cibles se basent finalement sur un filtre GM-PHD. / This PhD work is to be seen within the context of autonomous vehicle perception, in which the detection and localisation of elements of the surroundings in real time is an obvious requirement. Subsequent perception needs are manyfold, from localisation to obstacle detection, and are the subject of a continued research interest. The goal of this work is to build, in real time and from stereovision acquisition, a 3D map of the surroundings ; while detecting and tracking moving objects.Interest point selection and tracking on picture space are a first step, which we initiate by a thorough comparison of detectors from the literature. As regards tracking, we propose a massively parallel implementation of the standard KLT algorithm, using redundant tracking to provide reliable quality estimation. This allows us to track thousands of points in real-time, which compares favourably to the state of the art.Next step is the ego-motion estimation, along with the positioning of tracked points in 3D space. We first propose an iterative variant of the well known “SVD” process followed by UKF filtering, which allows for a very fast and reliable estimation. Then the position of every followed interest point is filtered on the fly over time, in contrast to most dense approaches from the literature.We finally propose a segmentation of moving objects in the augmented position-speed space, which is made possible by our continuous estimation of feature points position. Target tracking and filtering finally use a GM-PHD approach.

Page generated in 0.0613 seconds