Spelling suggestions: "subject:"[een] BAYESIAN NETWORKS"" "subject:"[enn] BAYESIAN NETWORKS""
131 |
Operational Risk Management - Implementing a Bayesian Network for Foreign Exchange and Money Market Settlement / Operationale Risiko Managment Implementierung eines Bayesian Network für Foreign Exchange and Money Market Settlement Process.Adusei-Poku, Kwabena 26 August 2005 (has links)
No description available.
|
132 |
Apports des réseaux bayésiens à la prévention du risque de piraterie à l'encontre des plateformes pétrolières / Contribution of Bayesian networks to the prevention of the risk of piracy against Oil Offshore FieldsBouejla, Amal 04 December 2014 (has links)
Ces dernières années, les attaques de pirates contre des navires ou des champs pétroliers n'ont cessé de se multiplier et de s'aggraver. Pour exemple, l'attaque contre la plateforme Exxon Mobil en 2010 au large du Nigeria s'est soldée par l'enlèvement de dix-neuf membres d'équipage et la réduction de 45.000 barils de sa production pétrolière quotidienne ce qui a engendré une montée des prix à l'échelle internationale.Cet exemple est une parfaite illustration de l'ampleur des dommages sur la sécurité des infrastructures pétrolières offshore.Dans le cadre de notre recherche, nous proposons une démarche de pilotage et de management du risque de piraterie en se basant sur le concept des réseaux bayésiens qui permettent la représentation des connaissances et le calcul des probabilités conditionnelles.Une dimension temporelle a été ajoutée par le recours aux réseaux bayésiens qualifiés de « dynamiques ». Ces réseaux, fondés sur les chaines de Markov cachées ou filtres de Kalman, se révèlent très performants dans le domaine de l'analyse des risques.L'application de ces réseaux au domaine de la piraterie a été envisagée, les apports et les limites seront évalués dans le cadre de cette thèse. / In recent years, pirate attacks against ships or oil fields have continued to multiply and worsen. For example, the attack against the Exxon Mobil platform in 2010 in the coast of Nigeria has resulted in the removal of nineteen crew members and the reduction of 45,000 barrels of daily oil production which resulted in a rise prices internationally.This example is a perfect illustration of the extent of damage on the safety of offshore oil infrastructure.As part of our research, we propose an approach to control and management of the risk of piracy based on the concept of Bayesian networks that enable knowledge representation and calculation of conditional probabilities.A temporal dimension was added by the use of Bayesian networks called "dynamic". These networks, based on Markov chains hidden or Kalman filters, are proving very effective in the field of risk analysis.The application of these networks on piracy was considered, the contributions and limitations will be evaluated as part of this thesis.
|
133 |
Automatic recognition of multiparty human interactions using dynamic Bayesian networksDielmann, Alfred January 2009 (has links)
Relating statistical machine learning approaches to the automatic analysis of multiparty communicative events, such as meetings, is an ambitious research area. We have investigated automatic meeting segmentation both in terms of “Meeting Actions” and “Dialogue Acts”. Dialogue acts model the discourse structure at a fine grained level highlighting individual speaker intentions. Group meeting actions describe the same process at a coarse level, highlighting interactions between different meeting participants and showing overall group intentions. A framework based on probabilistic graphical models such as dynamic Bayesian networks (DBNs) has been investigated for both tasks. Our first set of experiments is concerned with the segmentation and structuring of meetings (recorded using multiple cameras and microphones) into sequences of group meeting actions such as monologue, discussion and presentation. We outline four families of multimodal features based on speaker turns, lexical transcription, prosody, and visual motion that are extracted from the raw audio and video recordings. We relate these lowlevel multimodal features to complex group behaviours proposing a multistreammodelling framework based on dynamic Bayesian networks. Later experiments are concerned with the automatic recognition of Dialogue Acts (DAs) in multiparty conversational speech. We present a joint generative approach based on a switching DBN for DA recognition in which segmentation and classification of DAs are carried out in parallel. This approach models a set of features, related to lexical content and prosody, and incorporates a weighted interpolated factored language model. In conjunction with this joint generative model, we have also investigated the use of a discriminative approach, based on conditional random fields, to perform a reclassification of the segmented DAs. The DBN based approach yielded significant improvements when applied both to the meeting action and the dialogue act recognition task. On both tasks, the DBN framework provided an effective factorisation of the state-space and a flexible infrastructure able to integrate a heterogeneous set of resources such as continuous and discrete multimodal features, and statistical language models. Although our experiments have been principally targeted on multiparty meetings; features, models, and methodologies developed in this thesis can be employed for a wide range of applications. Moreover both group meeting actions and DAs offer valuable insights about the current conversational context providing valuable cues and features for several related research areas such as speaker addressing and focus of attention modelling, automatic speech recognition and understanding, topic and decision detection.
|
134 |
Les réseaux bayésiens : classification et recherche de réseaux locaux en cancérologie / Classification and capture of regulation networks with bayesian networks in oncologyPrestat, Emmanuel 25 May 2010 (has links)
En cancérologie, les puces à ADN mesurant le transcriptome sont devenues un outil commun pour chercher à caractériser plus finement les pathologies, dans l’espoir de trouver au travers des expressions géniques : des mécanismes,des classes, des associations entre molécules, des réseaux d’interactions cellulaires. Ces réseaux d’interactions sont très intéressants d’un point de vue biologique car ils concentrent un grand nombre de connaissances sur le fonctionnement cellulaire. Ce travail de thèse a pour but, à partir de ces mêmes données d’expression, d’extraire des structures pouvant s’apparenter à des réseaux d’interactions génétiques. Le cadre méthodologique choisi pour appréhender cette problématique est les « Réseaux Bayésiens », c’est-à-dire une méthode à la fois graphique et probabiliste permettant de modéliser des systèmes pourtant statiques (ici le réseau d’expression génétique) à l’aide d’indépendances conditionnelles sous forme d’un réseau. L’adaptation de cette méthode à des données dont la dimension des variables (ici l’expression des gènes, dont l’ordre de grandeur est 105) est très supérieure à la dimension des échantillons (ordre102 en cancérologie) pose des problèmes statistiques (de faux positifs et négatifs) et combinatoires (avec seulement 10gènes on a 4×1018 graphes orientés sans circuit possibles). A partir de plusieurs problématiques de cancers (leucémies et cancers du sein), ce projet propose une stratégie d’accélération de recherche de réseaux d’expression à l’aide de Réseaux Bayésiens, ainsi que des mises en œuvre de cette méthode pour classer des tumeurs, sélectionner un ensemble de gènes d’intérêt reliés à une condition biologique particulière, rechercher des réseaux locaux autour d’un gène d’intérêt.On propose parallèlement de modéliser un Réseau Bayésien à partir d’un réseau biologique connu, utile pour simuler des échantillons et tester des méthodes de reconstruction de graphes à partir de données contrôlées. / In oncology, microarrays have become a classical tool to search and characterize pathologies at a deeper level than previous methods, using genetic expression to find the mechanisms, classes, molecular associations, and cellular interaction networks of different cancers. From a biological point of view, these cellular networks are interesting because they concentrate a large amount of knowledge about cellular processes. The goal of this PhD thesis project is to extract structures that could correspond to genetic interaction networks from the expression data. "Bayesian Networks", i.e. a graphic and probabilistic method that models even static systems (like the expression network) with conditional independences, are used as the framework to investigate this problem. The adaptation of this method to data where the dimension of the variables (about 105 for gene expression) is much greater than the dimension of the samples (about 102 in oncology) aggravates some statistical and combinatorial problems. For several cancer problematics, this project proposes an acceleration strategy for capturing expression networks with Bayesian Networks and some methods to classify tumors, finding gene signatures of particular biological conditions by searching for local networks in the neighborhood of a gene of interest. In parallel, we propose to model a Bayesian Network from a known biological network, which is useful to simulate samples and to test these methods to reconstruct graphs from
|
135 |
Causation and the objectification of agencySchulz, Christoph January 2015 (has links)
This dissertation defends the so-called 'agency-approach' to causation, which attempts to ground the causal relation in the cause's role of being a means to bring about its effect. The defence is confined to a conceptual interpretation of this theory, pertaining to the concept of causation as it appears in a causal judgement. However, causal judgements are not seen as limited to specific domains, and they are not exclusively attributed to human agents alone. As a methodological framework to describe the different perspectives of causal judgments, a method taken from the philosophy of information is made use of - the so-called 'method of abstraction'. According to this method, levels of abstraction are devised for the subjective perspective of the acting agent, for the agent as observer during the observation of other agents' actions, and for the agent that judges efficient causation. As a further piece of propaedeutic work, a class of similar (yet not agency-centred) approaches to causation is considered, and their modelling paradigms - Bayesian networks and interventions objectively construed - will be criticised. The dissertation then proceeds to the defence of the agency-approach, the first part of which is a defence against the objection of conceptual circularity, which holds that agency analyses causation in causal terms. While the circularity-objection is rebutted, I rely at that stage on a set of subjective concepts, i.e. concepts that are eligible to the description of the agent's own experience while performing actions. In order to give a further, positive corroboration of the agency-approach, an investigation into the natural origins and constraints of the concept of agency is made in the central chapter six of the dissertation. The thermodynamic account developed in that part affords a third-person perspective on actions, which has as its core element a cybernetic feedback cycle. At that point, the stage is set to analyse the relation between the first- and the third-person perspectives on actions previously assumed. A dual-aspect interpretation of the cybernetic-thermodynamic picture developed in chapter six will be directly applied to the levels of abstraction proposed earlier. The level of abstraction that underpins judgments of efficient causation, the kind of causation seemingly devoid of agency, will appear as a derived scheme produced by and dependent on the concept of agency. This account of efficient causation, the 'objectification of agency', affords the rebuttal of a second objection against the agency-approach, which claims that the approach is inappropriately anthropomorphic. The dissertation concludes with an account of single-case, or token level, causation, and with an examination of the impact of the causal concept on the validity of causal models.
|
136 |
Evaluating the uncertainty in the performance of small scale renewablesThirkill, Adam January 2015 (has links)
The successful delivery of low-carbon housing (both new and retrofitted) is a key aspect of the UK s commitment to an 80% reduction in carbon emissions by 2050. In this context, the inclusion of small-scale building-integrated renewable energy technologies is an important component of low carbon design strategies, and is subject to numerous regulation and incentive schemes (including the Renewable Heat Incentive (RHI)) set up by government to encourage uptake and set minimum performance benchmarks. Unfortunately there are numerous examples of in-use energy and carbon performance shortfalls for new and retrofitted buildings this is termed the performance gap . Technical and human factors associated with building subsystem performance, which are often not considered in design tools used to predict performance, are the root cause of performance uncertainty. The research presented in this doctoral thesis aims to develop and apply a novel probabilistic method of evaluating the performance uncertainty of solar thermal systems installed in the UK. Analysis of measured data from a group of low carbon retrofitted dwellings revealed that the majority of buildings failed to meet the designed-for carbon emissions target with an average percentage difference of 60%. An in-depth case study technical evaluation of one of these dwellings showed significant dysfunction associated with the combined ASHP/solar thermal heating system, resulting in a performance gap of 94%, illustrating that the performance gap can be regarded as a whole-system problem, comprising a number of subsystem causal factors. Using a detailed dataset obtained from the UK s largest field trial of domestic solar thermal systems, a cross-cutting evaluation of predicted vs. measured performance similarly revealed a discrepancy with a mean percentage difference in predicted and measured annual yield of -24%. Having defined the nature and extent of underperformance for solar thermal technology in the UK, causal factors influencing performance were mapped and the associated uncertainty quantified using a novel knowledge-based Bayesian network (BN). In addition, the BN approach along with Monte Carlo sampling was applied to the well-established BREDEM model in order to quantify performance uncertainty of solar thermal systems by producing distributions of annual yield. As such, the modified BN-based BREDEM model represents a significant improvement in the prediction of performance of small-scale renewable energy technologies. Finally, financial analysis applied to the probabilistic predictions of annual yield revealed that the current UK RHI scheme is unlikely to result in positive returns on investment for solar thermal systems unless the duration of the payments is extended or electricity is the primary source of heating.
|
137 |
Redes probabilísticas: aprendendo estruturas e atualizando probabilidades / Probabilistic networks: learning structures and updating probabilitiesFaria, Rodrigo Candido 28 May 2014 (has links)
Redes probabilísticas são modelos muito versáteis, com aplicabilidade crescente em diversas áreas. Esses modelos são capazes de estruturar e mensurar a interação entre variáveis, permitindo que sejam realizados vários tipos de análises, desde diagnósticos de causas para algum fenômeno até previsões sobre algum evento, além de permitirem a construção de modelos de tomadas de decisões automatizadas. Neste trabalho são apresentadas as etapas para a construção dessas redes e alguns métodos usados para tal, dando maior ênfase para as chamadas redes bayesianas, uma subclasse de modelos de redes probabilísticas. A modelagem de uma rede bayesiana pode ser dividida em três etapas: seleção de variáveis, construção da estrutura da rede e estimação de probabilidades. A etapa de seleção de variáveis é usualmente feita com base nos conhecimentos subjetivos sobre o assunto estudado. A construção da estrutura pode ser realizada manualmente, levando em conta relações de causalidade entre as variáveis selecionadas, ou semi-automaticamente, através do uso de algoritmos. A última etapa, de estimação de probabilidades, pode ser feita seguindo duas abordagens principais: uma frequentista, em que os parâmetros são considerados fixos, e outra bayesiana, na qual os parâmetros são tratados como variáveis aleatórias. Além da teoria contida no trabalho, mostrando as relações entre a teoria de grafos e a construção probabilística das redes, também são apresentadas algumas aplicações desses modelos, dando destaque a problemas nas áreas de marketing e finanças. / Probabilistic networks are very versatile models, with growing applicability in many areas. These models are capable of structuring and measuring the interaction among variables, making possible various types of analyses, such as diagnoses of causes for a phenomenon and predictions about some event, besides allowing the construction of automated decision-making models. This work presents the necessary steps to construct those networks and methods used to doing so, emphasizing the so called Bayesian networks, a subclass of probabilistic networks. The Bayesian network modeling is divided in three steps: variables selection, structure learning and estimation of probabilities. The variables selection step is usually based on subjective knowledge about the studied topic. The structure learning can be performed manually, taking into account the causal relations among variables, or semi-automatically, through the use of algorithms. The last step, of probabilities estimation, can be treated following two main approaches: by the frequentist approach, where parameters are considered fixed, and by the Bayesian approach, in which parameters are treated as random variables. Besides the theory contained in this work, showing the relations between graph theory and the construction of probabilistic networks, applications of these models are presented, highlighting problems in marketing and finance.
|
138 |
Évaluation probabiliste de l’efficacité des barrières humaines prises dans leur contexte organisationnel / Probabilistic evaluation of the effectiveness of human barriers in their organizational contextDe Galizia, Antonello 28 February 2017 (has links)
Les travaux menés dans cette thèse CIFRE s’inscrivent dans le cadre d’une collaboration pérenne entre le CRAN et l'EDF R&D dont un des résultats majeurs a été le développement d'une méthodologie d’analyse de risques, appelée Analyse Intégrée des Risques (AiDR). Cette méthodologie traite des systèmes sociotechniques sous les angles technique, humain et organisationnel et dont les équipements sont soumis à des actions de maintenance et/ou de conduite. La thèse a pour objet ainsi de proposer une évolution du modèle dit de « barrière humaine » développé dans l'AiDR pour évaluer l'efficacité de ces actions humaines prises leur contexte organisationnel. Nos contributions majeures s'organisent autour de 3 axes : 1. Une amélioration de la structure préexistante du modèle de barrière humaine afin d’aboutir à un modèle basé sur des facteurs de forme appelés performance shaping factors (PSF) fournis par les méthodes d’Évaluation Probabiliste de la Fiabilité Humaine (EPFH) ;2. L’intégration de la résilience et la modélisation de l’interaction entre mécanismes résilients et pathogènes impactant l'efficacité des actions dans les relations causales probabilistes ;3. Un traitement global des jugements d’expert cohérent avec la structure mathématique du modèle proposé permettant d’estimer d’une manière objective les paramètres du modèle. Ce traitement se fonde sur la construction d’un questionnaire permettant de "guider" l’expert vers l’évaluation d’effets conjoints issus de l’interaction entre mécanismes pathogènes et résilients. L’ensemble des contributions proposées a été validé sur un cas d’application portant sur une barrière humaine mise en place dans un cas d’inondation externe d’une unité de production d’électricité d’EDF / The work carried out in this CIFRE PhD thesis is part of a long-term collaboration between CRAN and EDF R&D, one of the major results of which was the development of a risk analysis methodology called Integrated Risk Analysis (AiDR). This methodology deals with sociotechnical systems from technical, human and organizational points of view and whose equipment is subjected to maintenance and/or operation activities. This thesis aims to propose an evolution of the so-called "human barrier" model developed in the AiDR in order to evaluate the effectiveness of these human actions taken their organizational context. Our major contributions are organized around 3 axes: 1. Improvement of the pre-existing structure of the human barrier model to achieve a model based on performance shaping factors (PSF) provided by the Human Reliability Assessment (HRA) methods; 2. Integration of resilience and modeling of the interaction between resilient and pathogenic mechanisms impacting the effectiveness of activities in a probabilistic causal framework; 3. A global treatment of the expert judgments consistent with the mathematical structure of the proposed model in order to objectively estimate the parameters of the model. This treatment is based on a questionnaire to guide experts towards the evaluation of joint effects resulting from the interaction between pathogenic and resilient mechanisms. All of the proposed contributions have been validated on an application case involving a human barrier put in place during an external flooding occurring at an EDF power plant
|
139 |
INTERESSABILIDADE DE MODELOS DE REGRESSÃO EM MINERAÇÃO DE DADOS AGRÍCOLASEstevam Junior, Valter Luís 26 February 2015 (has links)
Made available in DSpace on 2017-07-21T14:19:22Z (GMT). No. of bitstreams: 1
Valter Luis.pdf: 3516533 bytes, checksum: d498d5c67dd1b9a837a128c20cabef67 (MD5)
Previous issue date: 2015-02-26 / The interestingness area of data mining process aiming to reduce the amount of models to be analyzed for experts in the interpretation step of the knowledge discovery in databases. In this work, a method for analysis the interestingness of regression models was developed. This method combine probabilistic multivariate models with Pearson correlation test and Wilcoxon signed-rank test resulting in a new interestingness measure, named Impact. The developed method was applied over regression models found during a data mining process for estimating agricultural gypsum requirements. The results showed that the probabilistic multivariate filter was able to filter the best models according to a utility-based approach, in this case, for practical application on agriculture. Six models were considered interesting, with Impact score > 0.5, and only one was miscategorized. On the other hand, the combined statistical test filters were able to filter six models two of them were miscategorized. The attributes identified as most relevant to estimate gypsum rate were: time, Ca and its concentration on effective cation exchange capacity (CaCTCe), mainly in superficial layers. / A interessabilidade de regras é uma área da mineração de dados que tem por objetivo reduzir a quantidade de modelos a serem analisados por especialistas na etapa de interpretação do conhecimento descoberto em bases de dados. Embora existam várias medidas de interesse de regras voltadas para as tarefas de associação e classificação, observa-se uma falta de métodos consolidados para análise de interessabilidade de modelos de regressão. Neste trabalho foi desenvolvido um método para analisar a interessabilidade de modelos de regressão, o qual combina um filtro baseado em modelos probabilísticos multivariados com filtros baseados em testes estatísticos de correlação de Pearson e de postos de sinais de Wilcoxon, resultando em uma nova medida de interessabilidade denominada Impacto. O método desenvolvido foi aplicado sobre modelos de regressão encontrados no processo de mineração de dados para estimativa de gesso agrícola. Estes dados resultam de três experimentos sob Sistema Plantio Direto realizados na Região dos Campos Gerais, PR, nos quais foram medidos, em diferentes épocas, os teores dos nutrientes do solo após a aplicação de doses de gesso. Os resultados mostraram que o filtro probabilístico multivariado foi capaz de filtrar os melhores modelos segundo uma visão de utilidade, ou seja, de potencial de aplicação agronômica. Foram selecionados seis modelos com score de Impacto > 0,5, ou seja, considerados interessantes, e destes apenas um foi considerado incorretamente classificado. Por outro lado, os filtros baseados em testes estatísticos foram capazes de filtrar seis modelos sendo que dois deles podem ser considerados incorretamente classificados. Os atributos identificados como mais relevantes para o problema do gesso agrícola foram a época, o teor de Ca e a concentração de Ca em relação à capacidade de troca catiônica efetiva (CTCe), especialmente em camadas superficiais do solo.
|
140 |
Modelo Probabilístico Bayesiano para Simular o Conhecimento de Especialistas no Controle da Ferrugem Asiática da Soja no Estado do ParanáFigueiredo, Gregory Vinícius Conor 08 September 2014 (has links)
Made available in DSpace on 2017-07-21T14:19:42Z (GMT). No. of bitstreams: 1
Gregory Vinicius Conor Figueiredo.pdf: 1131373 bytes, checksum: b73b9e64f3396b6758c55a6053159a14 (MD5)
Previous issue date: 2014-09-08 / The Asian rust is the main pathology of soybean culture, what makes it the object of several expert systems. This work aimed to build a probabilistic model to estimate the need and number of fungicide applications to control soybean Asian rust in Paraná using the Bayesian
network formalism and knowledge engineering. The model engineering was accomplished by interviews with experts and also by the literature review, what produced a Bayesian network built with the aid of software GeNIe 2.0, where the variables, graph structure and conditional
probability table of each variable were defined, what determined the influences between them. The tests made to evaluate the model were accompanied by two interviewed experts, who approved the model through proposed test cases. The results presented showed that the developed model rigorously represent the knowledge of the expert who accompanied its development, presenting common consensus among the other interviewed experts for the first fungicide application but diverging for the extra ones. / A ferrugem asiática é a principal patologia da cultura da soja, sendo alvo de aplicação de vários sistemas especialistas. Este trabalho teve como objetivo construir um modelo probabilístico para estimar a necessidade e número de aplicações de fungicida no controle da
ferrugem asiática da soja no Paraná utilizando o formalismo de redes bayesianas e engenharia
de conhecimento. A engenharia do modelo foi desenvolvida através de entrevistas com especialistas e também por meio da revisão da literatura, resultando em uma rede Bayesiana construída com o auxílio do software GeNIe 2.0, onde foram definidas as variáveis, a
estrutura do grafo e as tabelas de probabilidade condicional de cada variável, determinando as
influências entre elas. Os testes realizados para a validação do modelo foram acompanhados por dois especialistas entrevistados, que aprovaram o modelo a partir de casos de teste propostos. Os resultados apresentados mostraram que o modelo desenvolvido representa com rigor o conhecimento do especialista que acompanhou seu desenvolvimento, apresentando
consenso comum entre os demais especialistas entrevistados para a primeira aplicação de
fungicida, mas divergindo para aplicações adicionais.
|
Page generated in 0.039 seconds