• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 17
  • 13
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 116
  • 104
  • 19
  • 19
  • 16
  • 16
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Guest intercalation into metal halide inorganic-organic layered perovskite hybrid solids and hydrothermal synthesis of tin oxide spheres

Bandara, Nilantha, January 2008 (has links)
Thesis (M.S.)--Mississippi State University. Department of Chemistry. / Title from title screen. Includes bibliographical references.
72

Part I. Natural fiber / thermoplastic composites Part II. Studies of organo-clay synthesis and clay intercalation by epoxy resins /

Zhang, Yongcheng, January 2008 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Chemistry. / Title from title screen. Includes bibliographical references.
73

Nitric Oxide Reactivity and Unusual Redox Properties of Biomimetic Iron-Sulfur Clusters with Alternative Cluster Ligands

Schiewer, Christine Elisabeth 23 February 2018 (has links)
No description available.
74

A bioinorganic investigation of some metal complexes of the Schiff base, N,N'-bis(3-methoxysalicylaldimine)propan-2-ol

Mopp, Estelle 13 April 2012 (has links)
This thesis includes the synthesis, characterisation, antioxidant and antimicrobial activities of Cu(II)-, Co(II)- and Co(III) complexes with N,N'-bis(3- methoxysalicylaldimine)propan-2-ol, 2-OH-oVANPN. The Schiff base ligand, 2-OHoVANPN, is derived from o-vanillin and 1,3-diaminopropan-2-ol. The o-vanillin condensed with 1,3-diaminopropan-2-ol in a 2:1 molar ratio yields this potential tetraor pentadentate ligand. The complexes synthesized are tetra (or penta or hexa) coordinated. Formation of the complexes is symbolized as follows:- MX₂ + 2-OH-oVANPN (2:1) -> [M(2-OH-oVANPN)Xn] + HnX MX₂ + 2-OH-oVANPN (2:1) -> [Mn(2-OH-oVANPN)OH] + H₂X₂ MX₂ + (o-vanillin : diaminopropanol) (1:1) -> [M(1:1)X₂] MX₂ + (o-vanillin : diaminopropanol) (1:1) -> [M₃(1:1)X₄] M = Cu(II), Co(II) or Co(III); X = Cl; n = 1, 2. Their structural features have been deduced from their elemental analytical data, IR spectral data, and electronic spectral data. With the exception of {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆}(A4), the Cu(II) complexes were monomeric with 2-OH-oVANPN acting as a tetradentate ligand. A binuclear Co(II) complex, [Co₂(C₁₉H₁₉N₂O₅)(OH)] (B1), was synthesised and the rest of the Co(II) and Co(III) complexes were monomeric with chloride ions coordinating to the metal centre in some cases. Electronic data suggest that the cobalt(II) complexes have octahedral geometries and the copper(II) complexes have square planar structures – Co(III) is likely to be octahedral. Thermal analyses, which included the copper-block-method for determining sublimation temperatures, revealed that some copper(II) and cobalt(II) complexes are hygroscopic and sublime at 200 °C and below. DSC analyses of the Cu(II) complexes gave exotherms around 300 °C for complexes K[Cu(C₁₉H₂₀N₂O₅)(OH)]·2H₂O (A1) and [Cu(C₁₁H15N₂O₃)(Cl)₂]·2H₂O (A2) and above 400 °C for [Cu(C₁₁H₁₆N₂O₃)(Cl)₂] (A3) and {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆} (A4). Antioxidant studies were carried out against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·). The cobalt(II) complex, [Co₂(C₁₉H₁₉N₂O₅)(OH)] (B1), which was synthesized in the presence of KOH, had no antioxidant activity, whilst the other cobalt(II) complexes, [Co(C₁₇H₁₇N₂O₅(Cl))]·1½H₂O (B2), [Co(C₁₉H₂₂N₂O₅) (Cl)₂]·5½H₂O (B3) and [Co(C₁₉H₂₂N₂O₅)(Cl)₂]·5½H₂O (B4), which were synthesised in the absence of KOH, demonstrated antioxidant activity. The latter complexes are candidates for cancer cell line testing, while [Cu(C₁₁H₁₆N₂O₃)(Cl)₂] (A3), {Cu₃(C₁₁H₁₄N₂O₃)(Cl)₄(H₂O)₆} (A4), [Co(C₁₉H₂₁N₂O₅)(Cl)₂ ]·5H₂O (C2) and [Co(C₁₉H₂₀N₂O₅)(Cl)]·3H₂O (C3) may show anticancer activity through possible hydrolysis products. Most of the complexes synthesized displayed antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans. The results indicated that complexes [Cu(C₁₁H₁₆N₂O₃)(Cl)₂](A3), [Co(C₁₉H₂₂N₂O₅)(Cl)₂]·5½H₂O (B3) and [Co(C₁₉H₂₁N₂O₅)(Cl)₂ ]·5H₂O (C2) are active against the Gram-negative Ps. aeruginosa and that the ligand, 2-OH-oVANPN, did not have any activity. The same trend was observed with 2-OH-oVANPN, {Cu₃(C₁₁H₁₄N₂O₃)(Cl)4(H₂O)₆} (A4) and [Co(C₁₉H₂₀N₂O₅)(Cl)]·3H₂O (C3) against the Gram-positive S. aureus. As for activity against E. coli and C. albicans, some complexes showed more activity than the ligand. There is an observed trend here that the metal complexes are more active (toxic) than the corresponding ligand, which is in agreement with Tweedy’s chelation theory.
75

Complexos metálicos com nimesulida : síntese, caracterização e aplicações em química bioinorgânica medicinal / Metal complexes with nimesulide : synthesis, characterization and applications in bioinorganic medicinal chemistry

Paiva, Raphael Enoque Ferraz de, 1989- 25 August 2018 (has links)
Orientador: Pedro Paulo Corbi / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-25T01:00:34Z (GMT). No. of bitstreams: 1 Paiva_RaphaelEnoqueFerrazde_M.pdf: 15807547 bytes, checksum: e13f0a8a3bbde08ba558ac7cdb13c9a5 (MD5) Previous issue date: 2014 / Resumo: Complexos metálicos têm sido estudados quanto as suas propriedades medicinais há décadas. Neste trabalho, dois complexos inéditos de Ag(I) e Pt(II) foram sintetizados com o anti-inflamatório nimesulida (NMS), e avaliados como agentes antibacterianos e antitumorais. O complexo Ag-NMS (AgC13H11N2O5S) apresenta o ligante em uma coordenação bidentada à prata pelos átomos de N e O do grupo sulfonamida. A estrutura proposta foi confirmada por DFT. Devido à baixa solubilidade em água, foi preparado um complexo de inclusão de Ag-NMS em b-CD, pelo método de co-evaporação. Utilizando o método de Scatchard, foi determinado o valor de Ka = 370 2 L mol. Estudos de RMN por correlação H-H através do espaço mostram que a inclusão ocorre pelo grupo fenoxi da NMS. Já o complexo Pt-NMS (PtC26H22N4O10S2) apresenta dois ligantes, coordenados pelos átomos de N e O do grupo sulfonamida, para cada Pt(II). A DFT indica que o isômero N, O trans é o mais estável. O complexo Ag-NMS apresentou valores de MIC na faixa de 15,0-120 mmol L sobre cepas de Pseudomonas aeruginosa, Escherichia col e Staphylococcus aureus. O CE-[(Ag-NMS)·b-CD], embora mais solúvel em água do que o Ag-NMS, não apresentou atividade antibacteriana nas concentrações testadas. Os complexos Ag-NMS e Pt-NMS mostraram-se citotóxicos sobre células normais (Balb/c 3T3) e tumorais (SK-Mel 103 e Panc-1), porém o Pt-NMS foi significativamente mais seletivo contra as linhagens tumorais. Os ensaios de intercalação com EtBr e a avaliação da estrutura do DNA por dicroísmo circular indicam que o DNA não é um alvo biológico para o complexo Pt-NMS, indicando um mecanismo de ação diferente da cisplatina / Abstract: Metal complexes have been studied regarding its medicinal properties for decades. In this work, novel complexes of Ag(I) and Pt(II) with the anti-inflammatory nimesulide were synthesized and evaluated regarding their antibacterial and antitumoral properties. The Ag-NMS complex (AgC13H11N2O5S) shows the ligand in a bidentate coordination mode, bound to silver through the N and O atoms of the sulfonamide group. The proposed structure was confirmed by DFT. Due to its poor solubility in water, the Ag-NMS complex was included in b-CD, by co-evaporation. The Ka = 370 2 L mol was determined using the Scatchard method. Studies by H-H NMR correlation through space shows the inclusion of NMS by the fenoxi group. The Pt-NMS complex (PtC26H22N4O10S2) contain two ligands, coordinated through the N and O atoms of the sulfonamide group, for each Pt(II). DFT studies indicate that the N,O trans isomer is the most stable. The Ag-NMS complex presents MIC values in the range 15.0-120 mmol L over Pseudomonas aeruginosa, Escherichia coli e Staphylococcus aureus. The inclusion complex CE-[(Ag-NMS)·b-CD], although more soluble in water than Ag-NMS, shows no antibacterial activity in the tested concentrations. Both complexes were cytotoxic against normal (Balb/c 3T3) and tumor (SK-Mel 103 and Panc-1) cells, but the Pt-NMS complex was significantly more selective against tumor cells. The EtBr competitive intercalation assay and the evaluation of CT-DNA structure using circular dichroism show that DNA is not a biological target for the Pt-NMS complex, indicating a mechanism of action different of the cisplatin one / Mestrado / Quimica Inorganica / Mestre em Química
76

Synthesis, Characterization And Anticancer Activity Of Copper(I) Phosphine Complexes

Sanghamitra, Nusrat Jahan Mobassarah 03 1900 (has links) (PDF)
No description available.
77

Synthèse de modèles pour l'étude d'une nouvelle famille d'enzyme à fer et à manganèse / A biomimetic approach to investigate the reactivity of iron-manganese oxygenases.

Carboni, Michael 23 September 2011 (has links)
Les métaux sont impliqués dans de nombreux processus biologiques essentiels pour le vivant. Ils interviennent au sein de métallo-enzymes sélectives et efficaces, qui catalysent des réactions chimiques dans des conditions douces. Les plus illustres sont les RiboNucléotide Réductases (RNR), essentiels à la synthèse de l'ADN, ou bien encore la Méthane MonoOxygènase (MMO) capable à partir du méthane de former le méthanol, molécule à fort potentiel énergétique. Ces métallo-enzymes fonctionnent au travers d'un site actif contenant deux fers. Récemment, un nouveau membre de cette famille a été isolé et présente un nouveau site actif hétérodinucléaire à fer et manganèse. Le potentiel chimique de ces enzymes commence juste a être caractérisé, mais les premières études suggèrent une réactivité semblable aux enzymes homodinucléaires à fer. Puisque le comportement de l'ion métallique dans les protéines n'est pas très différent de la chimie fondamentale du métal, l'étude de petits analogues synthétiques de site actif est particulièrement utile. Nous proposons la synthèse de complexes dinucléaires à Fe-Mn pour étudier la réactivité et les propriétés électroniques de ce nouveau site actif. Par une étude physicochimique approfondie et des études de réactivités, nous avons apporté une meilleure compréhension sur la réactivité de ce nouveau système enzymatique. / Nonheme enzymes possessing a dinuclear active site are performing many essential functions such as Ribonucleotide reductase (RNR) in DNA production and Methane oxygenation (MMO) to convert gas toxic methane in combustible methanol. While most of these enzymes have been shown to possess a diiron active site, new members of this protein family were recently isolated from bacteria and found to possess instead a heterodinuclear Fe-Mn active site. The chemical potential of the heterodinuclear metal site is just starting to be evaluated, but available data suggest that it may have capabilities for similarly versatile chemistry as the extensively studied diiron-carboxylate cofactor. In recent years, the study of models based on simple dinuclear metal complexes has became an important tool for gaining insight into the biological functions of such bimetallic cores. The design of binucleating ligands capable of providing asymmetric dinuclear complexes is a subject of great interest. We propose to synthesize dinuclear Fe-Mn complexes to investigate the reactivity and the electronic properties of this new active site. By combining spectroscopic and electronical studies we have gain a better understanding on the reactivity of this new enzymatic system.
78

Substrate-Selective Copper Catalysts as Catalytic Metallodrugs: from G-Quadruplex Targeting Small-Molecular Nucleases to Artificial Glycosidases

Yu, Zhen 07 December 2017 (has links)
No description available.
79

Emergence, survival, and selection of metal-binding peptides in the prebiotic environment

Rossetto, Daniele 26 October 2022 (has links)
Metabolism is a subset of chemistry that allows cells to defy thermodynamic equilibrium, a fundamental process that must have been in place from the very beginning of biology. Before evolution produced efficient catalysts in the form of complex protein machinery, short metal binding peptides might have preceded modern metalloproteins. Such prebiotic, metal-binding motifs have been hypothesized to have existed through analyses of extant protein sequences. However, it is unclear how metal-binding motifs might have evolved in the harsh prebiotic environment. Here, we show how certain environments, in particular seawater-like environments rich in divalent cations and especially Mg2+, support the survival of short peptides upon extreme temperatures as high as 150 °C. Moreover, while Mg2+ does not offer the same protection from UV light, peptides are protected from both heat and irradiation when bound to a metal ion. The results suggest that specific environments rich in metal ions may be better suited for the emergence of complex systems in the path toward life. Additionally, the conditional degradation of peptides depending on their ability of binding metals might have enabled a selection mechanism that would favor the survival of metal-binding motifs which resemble the motifs found in modern proteins. These short sequences could have acted as early, simple catalysts able to facilitate a restricted set of chemical reactions, which would shape the emergence and biology of the Last Universal Common Ancestor.
80

Applications of resonance Raman spectroscopy to the study of bioinorganic macromolecules

Maugeri, Pearson Thomas, Maugeri January 2017 (has links)
No description available.

Page generated in 0.0266 seconds