• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 720
  • 381
  • 115
  • 95
  • 76
  • 31
  • 29
  • 27
  • 26
  • 13
  • 12
  • 9
  • 7
  • 7
  • 6
  • Tagged with
  • 1958
  • 562
  • 396
  • 300
  • 268
  • 216
  • 196
  • 182
  • 176
  • 173
  • 157
  • 142
  • 134
  • 124
  • 120
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

INELASTIC SEISMIC RESPONSE ANALYSIS OF ECCENTRICALLY LOADED STEEL BRIDGE PIERS

KASAI, Akira, 葛西, 昭, LIU, Qingyun, 劉, 青芸, USAMI, Tsutomu, 宇佐美, 勉 07 1900 (has links)
No description available.
312

せん断力を受ける無補剛箱形断面部材の強度と変形能

葛西, 昭, KASAI, Akira, 渡辺, 智彦, WATANABE, Tomohiko, 宇佐美, 勉, USAMI, Tsutomu, CHUSILP, Praween 04 1900 (has links)
No description available.
313

Deterioration Assessment of Bridge Rubber Bearings

Gu, Haosheng, 伊藤, 義人, Itoh, Yoshito January 2005 (has links)
No description available.
314

Corrosion-Degradation Prediction of Steel Bridge Paintings

金, 仁泰, Kim, In-Tae, 伊藤, 義人, Itoh, Yoshito 08 1900 (has links)
No description available.
315

塗装に着目した鋼橋のライフサイクルアナリシス

坪内, 佐織, Tsubouchi, Saori, 伊藤, 義人, Itoh, Yoshito, 金, 仁泰, Kim, In-Tae, 守屋, 進, Moriya, Susumu 03 1900 (has links)
No description available.
316

Seismic Response of Steel Bridge Piers with Aged Base-Isolated Rubber Bearing

Gu, Haosheng, Itoh, Yoshito 03 1900 (has links)
No description available.
317

Mätsystem för effektförluster i en högfrekvenstransformator / Measuringsystem for powerlosses in a highfrequency transformer

Strömberg, Tina, Gumucio, José January 2012 (has links)
To measure losses in a transformer with today’s methods is either slow or insecure. There s a new method developed by Alstom that hasn't been actualize in to a test-system and that has been the assignment in this project. The idea is built on a switched system and a CLR- circuit in the resonant frequency. The test-system has a calculated power-loss that make the efficiency to be as high as 99,8% and in reality over 95%. But in the end it was discovered that the circuit was only able to deliver 70A when the thought was 200 A. More over was with the frequency of 200 kHz the signal was so distorted that all results over 100 kHz should be questioned. The goal was a efficiency of 99%. That was one of the basis in our calculation and dimensioning. When we order the components we foundbetter than we needed och the efficiency was improved. In the reality the efficiency is 95% and we think it's because the measurements-instruments accuracy and the distortion. In some measurements the efficiency went over 100% and that greatly improve that idea. Every part of the circuit was simulated piece bye piece and then together. That to increase the understanding of the system and to see that themodel works. The simulated efficiency was very low compared to calculated and in reality. The fact was gathered from literature, technical reports from Alstom and meetings with Per Ranstad et. al. / Om man vill mäta förluster på en transformator skerdetta antingen väldigt osäkert eller väldigt långsamt. Det finns en ny metod som Alstomtagit fram, som inte realiserats i ett bestående testsystem förrän nu, vilket har varit detta projekt. Det hela bygger på ett switchat system och en CLR krets i resonansfrekvens. Det resulterade testsystemet hade en beräknad verkningsgrad på 99,8 % och i verkligheten över 95%. Dock i slutskedet upptäcktes att kretsen endast orkade mata ut 70 A jämfört med det tänkta 200 A. Dessutom vid frekvensen 200 kHz blev signalen väldigt förvrängd av störningar och de resultat för frekvenser från 100 kHz och uppåt kan därför ifrågasättas. Vi satte ett mål på en verkningsgrad på 99% som vi grundade våra räkningar och dimensioneringar på. När materialet skulle beställas hittades bättre komponenter än vad vi satt upp och verkningsgraden förbättrades. Varför verklighetens verkningsgrad hamnar på 95% tror vi har med noggrannheten på mätinstrumenten att göra och störningssignalen. Vissa mätningar uppgick till över 100% verkningsgrad som gör att misstankarna för mätinstrumenten stiger. Alla kretsdelar simulerades bit för bit och ihop för att öka förståelsen för systemet samt se att lösningen funkar. Den simulerade verkningsgraden blev väldigt lågt jämfört med beräknat och verkligheten. Fakta vi använt kommer från flera litteraturer, tekniska rapporter från Alstom och möten med Per Ranstad m.fl.
318

Reliability-based load management of the Red Deer River bridge

Jackson, Kristopher 05 October 2007 (has links)
This thesis presents the results of an investigation into the evaluation of a selected test bridge using instrumentation to obtain site-specific factors contributing to the evaluation, with the ultimate objective of improving the estimate of the bridges reliability in order to assess allowable loading more accurately. The experimental portion of the research program involved instrumenting the test bridge with strain gauges, and recording field measurements using two forms of loading. The analytical portion of the research program involved the analysis of the bridge in the as-designed state, based on the design drawings and specification, followed by a re-analysis of the bridge using the site-specific factors measured on-site. The bridge was evaluated using methods outlined in the Canadian Highway Bridge Design Code CAN/CSA-S6-00 (CSA 2000). <p>The test bridge is located near the community of Hudson Bay, Saskatchewan. The bridge is constructed of steel-reinforced concrete, and there are three, three-span arch-shaped girders. There are also external steel bars added after initial construction to increase the midspan bending moment resistance. In total, 45 strain gauges were placed on the middle spans of the three girders to record strain induced by two forms of loading: controlled loading, in which a truck of known weight and dimensions was driven over the bridge in a number of pre-determined configurations, and in-situ loading, in which normal truck traffic was used. The current allowable loading on the bridge is a gross vehicle weight of 62.5 t, although increasing the allowable loading to 110 t has been proposed, along with two strengthening alternatives to make this increased loading feasible. <p>To provide a base-line analysis for comparison purposes, the bridge was first evaluated based strictly on information taken from the design drawings and specifications. The evaluation was performed using the load and resistance factor method, in which load and resistance factors were used to account for uncertainty, as well as by the mean load method, in which statistical properties of the variables parameters included in the design were used to account for uncertainty. The result of the load and resistance factor method was a live load capacity factor, indicating the overall rating of the bridge. In addition to the live load capacity factor, the mean load method was also used to determine the reliability index. The results of the as-designed analysis showed that the mean load method gave more conservative estimates of the bridge capacity. Furthermore, it was determined that, based on these assessments, the bridge would not have sufficient capacity to carry the proposed 110 t truck loads.<p>The bridge was re-evaluated using site-specific factors with the mean load method. Using the measured strains, statistical parameters were determined for live load effects, distribution factors, dynamic load allowance, and resistance. Statistical parameters that could not be obtained readily through testing were obtained from the literature. The results indicated that code-predicted estimates of a number of factors were highly conservative. Flexural and shear load effects in the girders were found to be less than 15% of the theoretical predictions, as a result of apparent arching action in the girders, generating significant axial forces. For this arching action to occur, horizontal restraint was required at the supports, either through unanticipated restraint in the bearings, or tension tie action of the tensile girder reinforcement. Furthermore, the dynamic amplification was found to be less than 1.0. The resulting reliability indices indicated that the bridge would be safe under the proposed increased allowable loading (110 t). <p>Finite element models were used to confirm the dynamic amplification observations and examine the effects of different degrees of bearing restraint. The model showed results similar to those measured for dynamic amplification. It was found that if the bearings were to become completely fixed against horizontal translation, the bridge would become overloaded as a result of increased shear effects, demonstrating the need for proper bearing maintenance. <p>An analysis of relative costs was completed to determine the most cost-effective solution for hauling logs. Assumptions were made regarding truck and maintenance and operating costs. The results indicated that the most economic solution was to use the method outlined in the research to increase the allowable loading on the bridge to 110 t, over the strengthening alternatives and simply leaving the bridge in the current state.
319

Modeling of positive-displacement dispensing process

Kai, Jun 01 April 2008 (has links)
Fluid dispensing is a method by which fluid materials are delivered to the targeted boards in a controlled manner and has been extensively applied in various packaging processes in the electronics assembly industry. In these processes, the flow rate of the fluid dispensed and/or the fluid amount transferred onto a board are two important performance indexes. Due to the involvement of the compressibility and non-Newtonian behaviour of the fluid being dispensed, modeling the fluid dispensing process has proven to be a challenging task. This thesis presents a study on the modeling of the positive displacement dispensing process, in which the linear displacement of a piston is used to dispense fluid. Also, this thesis presents an evaluation of different designs of the fluid dispensing system based on the axiomatic design principles. <p>At first, the characterization of the flow behaviour of fluids used in the electronic packaging industry is addressed. Based on the previous experiments conducted in the authors lab, a 3-parameter Carreau model for the fluid Hysol FP4451 is derived for use in the present study. Then, taking into account fluid compressibility and flow behaviour, a model is developed to represent the dynamics of the flow rate of the fluid dispensed. The resulting model suggests that the dynamics of the flow rate in the positive displacement dispensing process is equivalent to that of a second order system. Based on the model developed, the influences of the fluid compressibility and the process parameters such as the dispensing time and needle temperature are investigated by simulations. <p>In the positive dispensing process, it is noticed that the fluid amount dispensed out of needle is different from the fluid amount finally transferred to the board, if the fluid amount dispensed is very small. This difference is considered one major problem affecting dispensing performance. In order to determine the fluid amount transferred to the board, a 3-step method is developed in the present study, based on existing theories of liquid bridges and Laplaces equation. Simulations are conducted based on the developed method to study the influence of surface tension and initial fluid amount on the final fluid amount transferred onto the board. <p> Finally, this thesis presents a new approach to evaluate and compare different designs of the fluid dispensing system, namely air-pressure, rotary-crew, and positive- displacement. In this approach, the axiomatic design principles, i.e., the Independence Axiom and the Information Axiom, are employed. This approach can be used not only to evaluate existing dispensing systems, but also to design new dispensing systems.
320

Excitation sources for structural health monitoring of bridges

Alwash, Mazin Baqir 19 May 2010 (has links)
Vibration-based damage detection (VBDD) methods are structural health monitoring techniques that utilize changes to the dynamic characteristics of a structure (i.e. its natural frequencies, mode shapes, and damping properties) as indicators of damage. While conceptually simple, considerable research is still required before VBDD methods can be applied reliably to complex structures such as bridges. VBDD methods require reliable estimates of modal parameters (notably natural frequencies and mode shapes) in order to assess changes in the condition of a structure. This thesis presents the results of experimental and numerical studies investigating a number of issues related to the potential use of VBDD techniques in the structural health monitoring of bridges, the primary issue being the influence of the excitation source.<p> Two bridges were investigated as part of this study. One is located on Provincial Highway No. 9 over the Red Deer River south of Hudson Bay, Saskatchewan. The other is located near the Town of Broadview, Saskatchewan, off Trans-Canada Highway No. 1, 150 km east of the City of Regina. Field tests and numerical simulations were conducted using different types of excitation to evaluate the quality of the modal properties (natural frequencies and mode shapes) calculated using these excitation types, and thus to evaluate the performance of VBDD techniques implemented using the resulting modal data. Field tests were conducted using different sources of dynamic excitation: ambient, traffic excitation, and impact excitation. The purpose of field testing was to study the characteristics and repeatability of the modal parameters derived using the different types of dynamic excitation, and to acquire data that could be used to update a FE model for further numerical simulation.<p> A FE model of the Red Deer River bridge, calibrated to match the field measured dynamic properties, was subjected to different types of numerically simulated dynamic excitation with different noise (random variations) levels added to them. The types of dynamic excitation considered included harmonic forced excitation, random forced excitation and the subsequent free vibration decay, impact excitation, and different models of truck excitation. The bridge model was subjected to four different damage scenarios; in addition, six VBDD methods were implemented to evaluate their ability to identify and localize damage. The effects of uncertainty in the definition of controlled-force excitation sources and variation in measurement of the bridge response were also investigated.<p> Field tests on the Hudson Bay bridge showed that excitation induced by large trucks generally produced more reliable data than that of smaller vehicles due to higher signal-to-noise ratios in the measured response. It was also found that considering only the free vibration phase of the response after the vehicle left the bridge gave more reliable data. Impact excitation implemented the on Hudson Bay bridge using a spring-hammer yielded repeatable and high quality results, while using a heavy weight delectometer for impact excitation on the Broadview bridge produced results of lesser quality due to the occurrence of multiple strikes of the impact hammer. In general, wind induced vibration measurements taken from both bridges were less effective for defining modal properties than large vehicle loading or impact excitation. All of the VBDD methods examined in this study could detect damage if the comparison was made between modal parameters acquired by eigenvalue analyses of two FE models of the bridge, before and after damage. However, the performance of VBDD methods declined when the dynamic properties were calculated from response time histories and noise was introduced. In general, the damage index method performed better than other damage detection methods considered.<p> Numerical simulation results showed that harmonic excitation, impact excitation, and the free decay phase after random excitation yielded results that were consistent enough to be used for the identification of damage. The reliability of VBDD methods in detecting damage dropped once noise was introduced. Noise superimposed on the excitation force had little effect on the estimated modal properties and the performance of VBDD methods. On the other hand, noise superimposed on the measured dynamic response had a pronounced negative influence on the performance of the VBDD methods.

Page generated in 0.0864 seconds