• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 698
  • 514
  • 168
  • 123
  • 77
  • 36
  • 23
  • 15
  • 15
  • 11
  • 10
  • 7
  • 6
  • 6
  • 6
  • Tagged with
  • 1979
  • 479
  • 339
  • 338
  • 209
  • 191
  • 186
  • 163
  • 154
  • 140
  • 128
  • 123
  • 116
  • 108
  • 106
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1111

Porosity and Permeability Distribution in the Deep Marine Play of the Central Bredasdorp Basin, Block 9, Offshore South Africa

OJongokpoko, Hanson Mbi January 2006 (has links)
>Magister Scientiae - MSc / This study describes porosity and permeability distribution in the deep marine play of the central Bredasdorp Basin, Block 9, offshore South Africa using methods that include thin section petrography, X-ray diffraction, and scanning electron microscopy, in order to characterize their porosity and permeability distributions, cementation and clay types that affect the porosity and permeability distribution. The study includes core samples from nine wells taken from selected depths within the Basin. Seventy three thin sections were described using parameters such as grain size measurement, quantification of porosity and permeability, mineralogy, sorting, grain shape, matrix, cementation, and clay content. Core samples were analyzed using x-ray diffraction for qualitative clay mineralogy and phase analysis. Scanning electron microscope analysis for qualitative assessment of clays and cements. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses were conducted on fifty-four (54) and thirty-five (35) samples respectively to identify and quantify the clay mineralogy of the sandstones. The SEM micrographs are also useful for estimating the type and distribution of porosity and cements. Analyses of these methods is used in describing the reservoir quality. Detrital matrix varies in abundance from one well to another. The matrix consists predominantly of clay minerals with lesser amounts of detrital cements. X-ray diffraction analyses suggest these clays largely consist of illitic and kaolinite, with minor amounts of chlorite and laumontite. Because these clays are highly illitic, the matrix could exhibit significant swelling if exposed to fresh sea water, thus further reducing the reservoir quality. The majority of the samples generally have significant cements; in particular quartz cement occurs abundantly in most samples. The high silica cement is possibly caused by the high number of nucleation sites owing to the relatively high abundance of detrital quartz. Carbonate cement, particularly siderite and calcite, occurs in variable amounts in most samples but generally has little effect on reservoir quality in the majority of samples. Authigenic, pore-filling kaolinite occurs in several samples and is probably related. to feldspar/glauconite alteration, it degrades reservoir quality. The presence of chlorite locally (plate 4.66A & B) and in minute quantities is attributed to a late stage replacement of lithic grains. Don't put references to plates and figures in abstract. A high argillaceous content is directly responsible for the low permeability obtained in the core analysis. Pervasive calcite and silica cementation are the main cause of porosity and permeability destruction. Dissolution of pore filling intergranular clays may result in the formation of micro porosity and interconnected secondary porosity. Based on the combination of information derived from thin section petrography, SEM and XRD, diagenetic stages and event sequences are established for the sandstone in the studied area. Reservoir quality deteriorates with depth, as cementation, grain coating and pore infilling authigenic chlorite, illite and kaolinite becomes more abundant.
1112

Svavelcirkulation i cementprocessen längs ugnslinje 7

Singh, Simanjit, Rova, Lovisa, Andersson, Jennifer January 2020 (has links)
Cement is produced in three main steps: grinding of a mixture of raw materials, sintering of the raw meal to form clinker, and grinding and mixing of clinker, gypsum and additives to make cement. Slag from steel manufacturing can be used to replace some of the raw material, but since slag is a carrier of some unwanted compounds, problems arise. Excess sulphur circulating in the system during clinker production can cause various problems such as clogging. In this report, the circulation of sulphur and other volatile compounds as well as the composition of gaseous and solid materials in the cyclone tower has been studied using old data from 2014 and new measurements. No sulphuric gases were found in the cyclones, so it was concluded that most of the sulphur condenses at the bypass at the inlet to the cyclone closest to the kiln. Condensation is assumed to occur early in the pre-heating tower because of air leaking in. Sulphur balances from 2014 and 2020 showed that usage of slag increases the amount of sulphur that circulates in the system and that the critical amount has been exceeded as of the measurements taken 2020. It is recommended that further measurements are performed, such as qualitative analysis of the solid material to distinguish the different sulphuric compounds, as well as more experiments with varied parameters such as the amount of slag and kiln fuel used.
1113

La influencia del RAP en la resistencia estructural de un pavimento reciclado en frío para el proyecto de conservación vial de la carretera Binacional Mazocruz – Puente Internacional / The influence of RAP on the structural resistance of a cold recycled pavement for the road conservation Project of the Mazocruz Binational Road – International Bridge

Flores Falcón, Carla Sofía, Saldaña Núñez, Antuanet Yahaira 21 July 2020 (has links)
El Proyecto de “Mejoramiento de la carretera Dv. Humajalso-Desaguadero y Tacna-Tarata-Capazo-Mazocruz por niveles de servicio” se encuentra en los departamentos de Tacna, Puno y Moquegua, Perú. Este proyecto es ejecutado por el Consorcio Vial Santa Rosa. La presente tesis, ubicado en el proyecto en mención, desarrolla el estudio de la influencia el RAP en el paquete de pavimento que será reciclado en frío, consistiendo en el pavimento reciclado; en este caso, al pavimento de asfalto existente más la base granular existente. Por lo que, se plantea el análisis escenarios desde base cero para tener una línea guía de referencia con espesores típicos de reciclados de 15 cm, 20 cm y 25 cm; en donde, se analiza la variación de la influencia del RAP con una proporción de cemento que se le agrega de 1% y 2% para estudiar el comportamiento con ayuda del CBR y del número estructural perteneciente a la fórmula de AASHTO. Se planteará el diseño del pavimento con cemento por medio de AASHTO. Por último, se verá en los resultados la influencia negativa que tiene el RAP en la resistencia estructural y la proporción aproximada de decremento de esta y las recomendaciones del caso. / The Project of “Mejoramiento de la carretera Dv. Humajalso-Desaguadero y Tacna-Tarata-Capazo-Mazocruz por niveles de servicio” is located in the departments of Tacna, Puno and Moquegua, Perú. This project is executed by Consorcio Vial Santa Rosa. This thesis, located in the project in question, develops the study of the influence of the RAP on the pavement package that will be cold recycled, consisting of the recycled pavement; in this case, to the existing asphalt pavement plus the existing granular base. Therefore, it is proposed to analyze scenarios from scratch to have a reference guideline with typical recycled thicknesses of 15 cm, 20 cm and 25 cm; where, the variation of the influence of the RAP is analyzed with a proportion of cement added of 1% and 2% to analyze the behavior with the help of the CBR and the structural number belonging to the AASHTO formula. The design of the pavement with cement through AASHTO will be considered. Finally, the negative influence of the RAP on the structural strength and the approximate proportion of its decrease will be seen in the results and the recommendations of the case. / Tesis
1114

Influence of C<sub>3</sub>S Content of Cement on Concrete Sulfate Durability

Shanahan, Natalya G 15 December 2003 (has links)
The influence of tricalcium silicate content of cement on concrete durability has long been a topic of discussion in the literature. The objective of this investigation was to determine whether increasing tricalcium silicate content of cement has a negative effect on concrete sulfate durability. Several mill certificates were reviewed to select cements with similar tricalcium aluminate content and variable tricalcium silicate contents. Cements selected for this study were randomly labeled as cements C, D, D2, E, and P. The following properties were assessed for the as-received cements: Blaine fineness, particle size distribution, chemical oxide content, and mineralogical content. Three different methods were employed to determine the mineralogical composition of the as-received cements: Bogue calculation, internal standard method, and Rietveld refinement analysis. Despite the attempt to select cements with similar composition, it was determined that the as-received cements had compositional differences other than their C3S content. These cements had a variable tricalcium aluminate and alkali content, as well as differences in the amount and form of calcium sulfates. In order to eliminate these variances, doped cements were prepared by increasing the C3S content of the as received cements to 69 % by Bogue calculation. Durability of as-received cements and doped cements was assessed through several measurements including length change, compressive strength, and phase transformation in sodium sulfate solution. For as-received cements, compressive strength of mortar cubes stored in saturated lime solution was evaluated as well. Semiquantitative x-ray diffraction analysis and scanning electron microscopy observations were performed on mortar bars to evaluate the relative amounts and morphology of the hydrated phases. It was concluded at the end of this study that cements with high tricalcium silicate content generally have poor durability in sodium sulfate environment. All the cements experienced higher expansion with increased C3S content. High C3S content combinedwith high C3A content was particularly detrimental to mortar resistance to sodium sulfate attack.
1115

Effect of resin cement, aging process and root level on the bond strength of the resin-fiber posts

Almulhim, Khalid 01 January 2014 (has links)
Background . Little is known about the long-term clinical bonding effectiveness of the Fiber-reinforced composite (FRC) posts cemented with self-etch adhesive systems. Bond stability and longevity of the cemented post are adversely affected by physical and chemical factors over time, such as expansion and contraction stresses caused by thermal changes and occlusal load. This clinical condition can be simulated in vitro by thermocyclic loading; and bonding effectiveness can be evaluated by applying the micropush out test. Therefore, more in vitro studies are needed to evaluate the bond strength of the fiber posts cemented with different resin cement systems after simulating the artificial aging induced by thermocycling. The aim of this study was to compare the microtensile bond strength of two different resin cement systems (total etch, and self-etch resin cement system) used for cementation of fiber reinforced composite posts in three different aging periods using thermocycling. Methods . Following IRB approval, sixty freshly extracted bicuspid single rooted natural teeth were endodontically treated, and the post-spaces were prepared to receive a fiber-post cemented with either a total etch resin cement (Rely-X Ultimate) or with a self-etch resin cement (Rely-X Unicem). No thermocycling, 20,000 and 40,000 cycles was used to age the specimens. Teeth were randomly allocated into six different groups: G1 - Control: Rely-X Ultimate cement with no thermocycling. G2: Rely-X Ultimate cement with 20,000 thermocycling. G3: Rely-X Ultimate cement with 40,000 thermocycling. G4: Rely-X Unicem cement. G5: Rely-X Unicem cement. G6: Rely-X Unicem cement. Microtensile bond strength determined using a micropush out test on a universal testing machine (MTS). Additionally, the failure mode of each specimen was observed under a stereomicroscope (Olympus) at 40x magnification. Finally, one representative sample was randomly selected from each of the five failure modes for scanning electron microscope (SEM) examination of the surface morphology in order to obtain SEM images of the failure patterns at 29-70x magnifications. Statistical analysis: Nested general linear and generalized linear model was created to look for statistical significance. Level of significance was set at P < 0.05. Results . No significant differences were found on the bond strength between the two types of resin cement systems (total etch and self-etch). Regarding the thermocycling effect, the bond strengths of the group of 40,000 cycles was significantly lower than the 20,000 cycle group. In addition, the bond strengths of the specimens collected from the coronal third of the root were significantly lower than the specimens from the apical third. A Fisher's Exact test was applied to evaluate the failure mode differences, and showed statistically significant differences between the groups. Conclusions . The bond strength to the root canal dentin did not vary with the type of resin cement systems (total-etch vs self-etch). The microtensile bond strength values of FRC posts were significantly affected by increasing the thermocycling, and were significantly different among the different longitudinal levels of the root canal.
1116

Color of Porcelain Veneer after Final Cementation in Comparison to Try-in Paste and Permanent Cement: An In Vitro Study

Aldahlawi, Abdulelah 10 November 2015 (has links)
Objectives: To evaluate and compare the color of porcelain veneers with try-in paste in relation to porcelain veneers with permanent cement. Also, to evaluate and compare combinations of three different shades and thicknesses of porcelain veneers and three cement shades before and after final cementation. Additionally, to evaluate and compare the color of porcelain veneers with cured permanent cement before and after aging. Background: Porcelain veneers and ceramic restorations have become one of the most popular approaches in the anterior area due to their natural appearance and esthetics. However, more conservative approaches have led to thinner restorations with increased translucency. A potential drawback to these restorations is that any color change in the luting cement can become clinically visible, and possibly affect esthetic appearance. Methods: One hundred and eight specimens were cut from feldspathic porcelain blocs (Vitablocs Mark II for CEREC). Three different Vita 3D- Master 1M1, 2M2, and 3M1 shades were assessed. All specimens were 12 x 14 mm, with three different thicknesses of 0.3, 0.5, and 1.0 mm. Light-cured resin cement (Variolink Veneer, Ivoclar Vivadent) with three different shades was used. The specimen color alone, with the try-in paste, and with pre-cured and post-cured resin cement was measured using a spectrophotometer (Color Eye 7000A), which measures CIE-L*a*b* values. Specimens were subjected to 30,000 cycles of accelerated aging (Themo-cycling, Sarbi Dental Enterprises Inc.). Color measurement for all specimens was performed again and ∆E values between groups been calculated. Statistical analysis was performed using one-way and three-way ANOVA, with level of significant set at α=0.05, to assess differences between groups. This was followed by post hoc Tukey's tests. Results: Statistical analysis showed a significant difference between try-in paste and corresponding cured resin cement. Pre-cured and post-cured resin cement values showed a significant difference between cement shades. Moreover, statistically significant differences were found between post-cured cement and after 30,000 cycles of thermo-cycling. Conclusions: The final color of porcelain veneers was highly affected by the different shades of resin cement and by the thicknesses of the porcelain veneer. The use of higher ceramic thickness decreased the ∆E values when compared to thinner veneers. Also, color stability of ceramic veneer restorations luted with resin cement, was significantly influenced by the aging.
1117

Effect of Admixtures, Chlorides, and Moisture on Dielectric Properties of Portland Cement Concrete in the Low Microwave Frequency Range

Pokkuluri, Kiran S. 28 October 1998 (has links)
The use of electromagnetic waves as a nondestructive evaluation technique to evaluate Portland cement concrete (PCC) structures is based on the principle that a change in the structure, composition, or properties of PCC results in a change in its dielectric properties. The coaxial transmission line is one of the few devices that can measure the dielectric properties of PCC at a frequency range of 100-1000 MHz. A coaxial transmission line developed at Virginia Tech was used to study the effect of moisture, type of aggregate, water/cement ratio, curing period, admixture type (microsilica, superplasticizer, and shrinkage admixture), and chloride content on the dielectric properties of PCC. Measurements were conducted in the time domain and converted to the frequency domain using Fast Fourier Transform. The research found that an increase in the moisture content of PCC resulted in an increase in the dielectric constant. Mixes containing limestone aggregate had a greater dielectric constant than those containing granite. The dielectric constant decreased with curing period due to the reduction in free water availability. Mixes containing higher water/cement ratios exhibited a higher dielectric constant, especially in the initial curing period. The admixtures did not significantly affect the dielectric constant after one day of curing. After 28 days of curing, however, all three admixtures had an effect on the measured dielectric constant as compared to control mixes. Chloride content had a significant effect on the loss part of the dielectric constant especially during early curing. A relationship was also established between the chloride permeability (based on conductance measurements) of PCC and its dielectric constant after 75 days of moist curing. / Master of Science
1118

Influence of saliva contamination on resin bond durability to zirconia - effect of cleaning methods

Patel, Dhara January 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Background and Rationale: As compared with glass-based ceramics, zirconia has gained considerable popularity in restorative dentistry due to its superior mechanical properties. Clinically, however, zirconia ceramics pose a significant challenge regarding the achievement of a reliable and durable bond to resin-based cements. Thus far, it has been established that zirconia bond to resin-based cements can be enhanced after different surface conditioning methods, such as airborne particle abrasion with aluminum oxide particles. Meanwhile, another major issue pertaining to bonding of ceramic restorations is related to its potential contamination before cementation. Briefly, after sandblasting and clinical try-in procedures, zirconia can be contaminated with saliva and/or blood. As with many metals, zirconium shows a strong affinity towards the phosphate group found in saliva and other fluids, which reacts with the zirconia surface and makes bonding very difficult. Recently, a new cleaning agent called Ivoclean® (Ivoclar-Vivadent), which is an alkaline suspension of zirconium oxide particles, has been introduced in the market to remove contamination from zirconia in an effort to improve bonding to resin cements. Objective: The purpose of this study was to evaluate the influence of saliva contamination and the effect of several cleaning methods, including Ivoclean on resin bond strength to zirconia. Materials and Methods: Eighty square-shaped specimens (ϕ = 12 mm x 12 mm x 3 mm) of yttria-stabilized full-contour zirconia (Diazir®, Ivoclar-Vivadent, Amherst, NY) were sectioned from zirconia blocks using a water-cooled diamond blade. Then, these specimens were embedded in acrylic resin, and their surfaces gradually finished with silicon carbide papers (600 grit to 1200 grit). The prepared zirconia surfaces were sandblasted with 50-μm aluminum oxide particles for 15 s, under 2.5 bars and from distance of 10 mm. After sandblasting the specimens were cleaned in an ultrasonic bath containing distilled water for 5 min and air-dried for 10s. All samples were equally divided into 4 groups (n = 20) according to the cleaning method. Airborne particle abraded specimens without contamination was served as the control group. Remaining groups were contaminated with saliva, and subjected to different cleaning protocols, namely: Ivoclean®, 70% isopropanol, and no treatment. Two resin cement buttons (Multilink – Ivoclar-Vivadent, Amherst, NY) were built over each zirconia surface and light-cured following the manufacturer recommendations. The influence of contamination and surface cleaning methods on ceramic bond durability were examined after 24 h on half of the samples in each group (n = 10, n = 20), and the other half (n = 10, n = 20) specimens will undergo 6000 thermocycles (TC) before shear bond testing in the universal testing machine. Conclusion of Expected Outcomes: The shear bond strength of resin cement to zirconia led to a significant improvement after cleaning with Ivoclean both immediately and after thermal aging.
1119

Long-Term Durability of Ordinary Portland Cement and Polypropylene Fiber Stabilized Soil

ARYAL, SUMAN 01 August 2019 (has links)
Soft soil stabilization frequently uses cement, lime, fly ash, etc., but very limited studies were conducted on the long-term durability of stabilized soil. The present research work deals with the long-term durability of commercially available soil (i.e., EPK clay) stabilized with ordinary Portland cement and polypropylene fiber using a realistic approach, where the effect can be noticed in each weathering cycle. In the present study, two different tests (i.e., wetting-drying and freezing-thawing) were conducted to analyze the long-term durability of stabilized soil. Cycles of higher temperature followed by rainfall, which generally occurs in southern states of the US, were analyzed by the wetting-drying test; and on the other hand, cycles of freezing temperature followed by normal temperature, which generally occurs in northern states of the US and Canada, were analyzed by the freezing-thawing test. For the mid-continental region where freezing, normal, and higher temperature followed by rainfall are expected to occur, hence both the test method i.e., wetting-drying and freezing-thawing, were suggested. Laboratory experimental investigations were conducted to find the percentage loss of stabilized soil during wetting-drying and freezing-thawing tests, which were used as a durability indicator for cement and cement-fiber stabilized soil. Stabilized samples were subjected to harsh environmental conditions in a laboratory set up, and their deterioration was observed and studied after each wetting-drying and freezing-thawing cycle. In the real world, stabilized soil encounters seasonal cycles of monsoon and summer in long run of its service life which was simulated in rapid weathering cycles in laboratory setup. EPK clay samples were stabilized with different percentages of cement, and a mix of cement-fiber combination and were subjected to 12 cycles of wetting-drying and freezing-thawing cycles separately to determine the percentage loss of soil in accordance with the ASTM standards. Finally, based on percentage loss of soil of those stabilized samples which survived up to 12 cycles of weathering action, the optimum content of stabilizing agent was determined for wetting-drying and freezing-thawing tests. Results of wetting-drying tests indicate that EPK clay stabilized with ordinary Portland cement and fiber combination survived up to 12 cycles, but only 10% cement + 0.5% fiber was durable against wetting-drying based on percentage loss. For all the samples stabilized with 10% cement + 0.5% fiber combination, the percentage loss of soil when subjected to durability test was less than 7%, which satisfy the Portland Cement Association’s (PCAs) durability specification. The results of freezing-thawing tests indicate that the EPK clay stabilized with 10% cement, 5% cement + 0.5% fiber, and 10% cement + 0.5% fiber survived up to 12 cycles and were durable against freezing-thawing based on percentage loss of soil i.e., less than 7% which satisfy the Portland Cement Association’s durability specification.
1120

Snižování emisí v cementářském průmyslu / Reducing emissions in the cement industry

Přehnal, Petr January 2012 (has links)
The thesis is focused on the study of the use of fluidized bed fly ash as part of the raw mealfor firing Portland clinker in order to reduce carbon dioxide emissions. It is aimed atoptimizing the cutting mode belit cement to increase its reactivity.

Page generated in 0.1491 seconds